Clade composition of a plant community indicates its phylogenetic diversity
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32313633
PubMed Central
PMC7160181
DOI
10.1002/ece3.6170
PII: ECE36170
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity, clade index, phylogenetic divergence, phylogenetic regularity, phylogenetic richness,
- Publikační typ
- časopisecké články MeSH
Phylogenetic diversity quantification is based on indices computed from phylogenetic distances among species, which are derived from phylogenetic trees. This approach requires phylogenetic expertise and available molecular data, or a fully sampled synthesis-based phylogeny. Here, we propose and evaluate a simpler alternative approach based on taxonomic coding. We developed metrics, the clade indices, based on information about clade proportions in communities and species richness of a community or a clade, which do not require phylogenies. Using vegetation records from herbaceous plots from Central Europe and simulated vegetation plots based on a megaphylogeny of vascular plants, we examined fit accuracy of our proposed indices for all dimensions of phylogenetic diversity (richness, divergence, and regularity). For real vegetation data, the clade indices fitted phylogeny-based metrics very accurately (explanatory power was usually higher than 80% for phylogenetic richness, almost always higher than 90% for phylogenetic divergence, and often higher than 70% for phylogenetic regularity). For phylogenetic regularity, fit accuracy was habitat and species richness dependent. For phylogenetic richness and divergence, the clade indices performed consistently. In simulated datasets, fit accuracy of all clade indices increased with increasing species richness, suggesting better precision in species-rich habitats and at larger spatial scales. Fit accuracy for phylogenetic divergence and regularity was unreliable at large phylogenetic scales, suggesting inadvisability of our method in habitats including many distantly related lineages. The clade indices are promising alternative measures for all projects with a phylogenetic framework, which can trade-off a little precision for a significant speed-up and simplification, such as macroecological analyses or where phylogenetic data is incomplete.
Department of Botany Palacky University Olomouc Czech Republic
Department of Ecology and Environmental Sciences Palacky University Olomouc Czech Republic
Department of Ecology Czech University of Life Sciences Prague Czech Republic
Zobrazit více v PubMed
Allen, J. M. , Germain‐Aubrey, C. C. , Barve, N. , Neubig, K. M. , Majure, L. C. , Laffan, S. W. , … Soltis, P. S. (2019). Spatial phylogenetics of Florida vascular plants: The effects of calibration and uncertainty on diversity estimates. iScience, 11, 57–70. 10.1016/j.isci.2018.12.002 PubMed DOI PMC
Barker, G. M. (2002). Phylogenetic diversity: A quantitative framework for measurement of priority and achievement in biodiversity conservation. Biological Journal of the Linnean Society, 76, 165–194. 10.1111/j.1095-8312.2002.tb02081.x DOI
Benson, D. A. , Cavanaugh, M. , Clark, K. , Karsch‐Mizrachi, I. , Lipman, D. J. , Ostell, J. , & Sayers, E. W. (2017). GenBank. Nucleic Acids Research, 41, D37–D42. 10.1093/nar/gkw1070 PubMed DOI PMC
Cadotte, M. W. (2015). Phylogenetic diversity–ecosystem function relationships are insensitive to phylogenetic edge lengths. Functional Ecology, 29, 718–723. 10.1111/1365-2435.12429 DOI
Cadotte, M. W. , Davies, T. J. , Regetz, J. , Kembel, S. W. , Cleland, E. , & Oakley, T. H. (2010). Phylogenetic diversity metrics for ecological communities: Integrating species richness, abundance and evolutionary history. Ecology Letters, 13, 96–105. 10.1111/j.1461-0248.2009.01405.x PubMed DOI
Campbell, N. , Neat, F. , Burns, F. , & Kunzlik, P. (2010). Species richness, taxonomic diversity, and taxonomic distinctness of the deep‐water demersal fish community on the Northeast Atlantic continental slope (ICES Subdivision Via). ICES Journal of Marine Science, 68, 365–376. 10.1093/icesjms/fsq070 DOI
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552. 10.1093/oxfordjournals.molbev.a026334 PubMed DOI
Chytrý, M. , Pyšek, P. , Tichý, L. , Knollová, I. , & Danihelka, J. (2005). Invasions by alien plants in the Czech Republic: A quantitative assessment across habitats. Preslia, 77, 339–354.
Chytrý, M. , & Rafajová, M. (2003). Czech National Phytosociological Database: Basic statistics of the available vegetation‐plot. Preslia, 75, 1–15.
Clarke, K. R. , & Warwick, R. M. (2001). A further biodiversity index applicable to species lists: Variation in taxonomic distinctness. Marine Ecology Progress Series, 216, 265–278. 10.3354/meps216265 DOI
Dobeš, C. , Rossa, J. , Paule, J. , & Hülber, K. (2013). Morphology, DNA‐molecular variation, karyology, ecogeography, and phytosociology suggest allopatric differentiation and species rank for Potentilla rigoana (Rosaceae). Taxon, 62, 733–745. 10.12705/624.8 DOI
Drori, M. , Rice, A. , Einhorn, M. , Chay, O. , Glick, L. , & Mayrose, I. (2018). OneTwoTree: An online tool for phylogeny reconstruction. Molecular Ecology Resources, 18, 1492–1499. 10.1111/1755-0998.12927 PubMed DOI
Durka, W. , & Michalski, S. G. (2012). Daphne: A dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology, 93, 2297 10.1890/12-0743.1 DOI
Elliott, T. L. , Waterway, M. J. , & Davies, T. J. (2016). Contrasting lineage‐specific patterns conceal community phylogenetic structure in larger clades. Journal of Vegetation Science, 27, 69–79. 10.1111/jvs.12345 DOI
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1–10.
Gerhold, P. , Carlucci, M. B. , Proches, S. , & Prinzing, A. (2018). The deep past controls the phylogenetic structure of present, local communities. Annual Review of Ecology, Evolution, and Systematics, 49, 477–497. 10.1146/annurev-ecolsys-110617-062348 DOI
Graham, C. H. , Storch, D. , & Machac, A. (2018). Phylogenetic scale in ecology and evolution. Global Ecology and Biogeography, 27, 175–187. 10.1111/geb.12686 DOI
Hall, S. J. , & Greenstreet, S. P. (1998). Taxonomic distinctness and diversity measures: Responses in marine fish communities. Marine Ecology Progress Series, 166, 227–229.
Heard, S. B. (1992). Patterns in tree balance among cladistic, phenetic, and randomly generated phylogenetic trees. Evolution, 46, 1818–1826. 10.1111/j.1558-5646.1992.tb01171.x PubMed DOI
Hinchliff, C. E. , Smith, S. A. , Allman, J. F. , Burleigh, J. G. , Chaudhary, R. , Coghill, L. M. , … Cranston, K. A. (2015). Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proceedings of the National Academy of Sciences of the United States of America, 13, 12764–12769. 10.1073/pnas.1423041112 PubMed DOI PMC
Iv, A. P. G. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181, 1–20. 10.1111/boj.12385 DOI
Jantzen, J. R. , Whitten, W. M. , Neubig, K. M. , Majure, L. C. , Soltis, D. E. , & Soltis, P. S. (2019). Effects of taxon sampling and tree reconstruction methods on phylodiversity metrics. Ecology and Evolution, 9, 9479–9499. 10.1002/ece3.5425 PubMed DOI PMC
Katoh, K. , & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kembel, S. W. , Cowan, P. D. , Helmus, M. R. , Cornwell, W. K. , Morlon, H. , Ackerly, D. D. , … Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463–1464. 10.1093/bioinformatics/btq166 PubMed DOI
Kumar, S. , Stecher, G. , Suleski, M. , & Hedges, S. B. (2017). TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34, 1812–1819. 10.1093/molbev/msx116 PubMed DOI
Li, D. , Trotta, L. , Marx, H. E. , Allen, J. M. , Sun, M. , Soltis, D. E. , … Baiser, B. (2019). For common community phylogenetic analyses, go ahead and use synthesis phylogenies. Ecology, 100, e02788 10.1002/ecy.2788 PubMed DOI PMC
Miller, E. T. , Farine, D. R. , & Trisos, C. H. (2017). Phylogenetic community structure metrics and null models: A review with new methods and software. Ecography, 40, 461–477. 10.1111/ecog.02070 DOI
Miller, M. A. , Pfeiffer, W. , & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees Proceedings of the gateway computing environments workshop (GCE) (pp. 1–8).
Ndiribe, C. , Pellissier, L. , Antonelli, S. , Dubuis, A. , Pottier, J. , Vittoz, P. , … Salamin, N. (2013). Phylogenetic plant community structure along elevation is lineage specific. Ecology and Evolution, 3, 4925–4939. PubMed PMC
Park, D. S. , Worthington, S. , & Xi, Z. (2018). Taxon sampling effects on the quantification and comparison of community phylogenetic diversity. Molecular Ecology, 27, 1296–1308. 10.1111/mec.14520 PubMed DOI
Pinheiro, J. , Bates, D. , DebRoy, S. , & Sarkar, D. , & R Core Team (2019). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1‐139. Retrieved from https://CRAN.R-project.org/package=nlme
Qian, H. , & Jin, Y. (2016). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9, 233–239. 10.1093/jpe/rtv047 DOI
R Core Team (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; Retrieved from https://www.R-project.org/
Rambaut, A. , Drummond, A. J. , Xie, D. , Baele, D. , & Suchard, M. A. (2018). Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904. 10.1093/sysbio/syy032 PubMed DOI PMC
Redding, D. W. , & Mooers, A. O. (2006). Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20, 1670–1678. 10.1111/j.1523-1739.2006.00555.x PubMed DOI
Sandel, B. (2018). Richness‐dependence of phylogenetic diversity indices. Ecography, 41, 837–844. 10.1111/ecog.02967 DOI
Scheiner, S. M. , Kosman, E. , Presley, S. J. , & Willig, M. R. (2017). The components of biodiversity, with a particular focus on phylogenetic information. Ecology and Evolution, 7, 6444–6454. 10.1002/ece3.3199 PubMed DOI PMC
Suchard, M. A. , Lemey, P. , Baele, G. , Ayres, D. L. , Drummond, A. J. , & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4, vey016 10.1093/ve/vey016 PubMed DOI PMC
Swenson, N. G. (2009). Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE, 4, e4390 10.1371/journal.pone.0004390 PubMed DOI PMC
Swenson, N. G. (2014). Functional and phylogenetic ecology in R. New York, NY: Springer.
Tucker, C. M. , Cadotte, M. W. , Carvalho, S. B. , Davies, T. J. , Ferrier, S. , Fritz, S. A. , … Mazel, F. (2017). A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92, 698–715. 10.1111/brv.12252 PubMed DOI PMC
Vellend, M. , Cornwell, W. K. , Magnuson‐Ford, K. , & Mooers, A. O. (2011). Measuring phylogenetic diversity In Magurran A. E., & McGill B. (Eds.), Biological diversity: Frontiers in measurement and assessment (pp. 193–206). Oxford, UK: Oxford University Press.
Warwick, R. M. , & Clarke, K. R. (1995). New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series, 129, 301–305.
Webb, C. O. , Ackerly, D. D. , McPeek, M. A. , & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Reviews of Ecology, Evolution, and Systematics, 33, 475–505. 10.1146/annurev.ecolsys.33.010802.150448 DOI
Yguel, B. , Jactel, H. , Pearse, I. S. , Moen, D. , Winter, M. , Hortal, J. , … Prinzing, A. (2016). The evolutionary legacy of diversification predicts ecosystem function. The American Naturalist, 188, 398–410. 10.1086/687964 PubMed DOI
Zanne, A. E. , Tank, D. C. , Cornwell, W. K. , Eastman, J. M. , Smith, S. A. , FitzJohn, R. G. , … Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89–92. 10.1038/nature12872 PubMed DOI