Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle reveals differential flexibility of the DNA ends
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't
PubMed
32313946
PubMed Central
PMC7261176
DOI
10.1093/nar/gkaa246
PII: 5822962
Knihovny.cz E-resources
- MeSH
- DNA chemistry MeSH
- Cryoelectron Microscopy MeSH
- Humans MeSH
- Nucleosomes chemistry ultrastructure MeSH
- Centromere Protein A chemistry MeSH
- Molecular Dynamics Simulation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- DNA MeSH
- Nucleosomes MeSH
- Centromere Protein A MeSH
The histone H3 variant CENP-A marks centromeres epigenetically and is essential for mitotic fidelity. Previous crystallographic studies of the CENP-A nucleosome core particle (NCP) reconstituted with a human α-satellite DNA derivative revealed both DNA ends to be highly flexible, a feature important for CENP-A mitotic functions. However, recent cryo-EM studies of CENP-A NCP complexes comprising primarily Widom 601 DNA reported well-ordered DNA ends. Here, we report the cryo-EM structure of the CENP-A 601 NCP determined by Volta phase-plate imaging. The data reveal that one ('left') 601 DNA end is well ordered whereas the other ('right') end is flexible and partly detached from the histone core, suggesting sequence-dependent dynamics of the DNA termini. Indeed, a molecular dynamics simulation of the CENP-A 601 NCP confirmed the distinct dynamics of the two DNA extremities. Reprocessing the image data using two-fold symmetry yielded a cryo-EM map in which both DNA ends appeared well ordered, indicating that such an artefact may inadvertently arise if NCP asymmetry is lost during image processing. These findings enhance our understanding of the dynamic features that discriminate CENP-A from H3 nucleosomes by revealing that DNA end flexibility can be fine-tuned in a sequence-dependent manner.
Izmir Biomedicine and Genome Center Dokuz Eylul University Health Campus Balcova Izmir 35330 Turkey
Université Grenoble Alpes CEA CNRS Institut de Biologie Structurale 38000 Grenoble France
See more in PubMed
Earnshaw W.C., Migeon B.R.. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma. 1985; 92:290–296. PubMed
Palmer D.K., O’Day K., Wener M.H., Andrews B.S., Margolis R.L.. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 1987; 104:805–815. PubMed PMC
Regnier V., Vagnarelli P., Fukagawa T., Zerjal T., Burns E., Trouche D., Earnshaw W., Brown W.. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol. Cell. Biol. 2005; 25:3967–3981. PubMed PMC
Goutte-Gattat D., Shuaib M., Ouararhni K., Gautier T., Skoufias D.A., Hamiche A., Dimitrov S.. Phosphorylation of the CENP-A amino-terminus in mitotic centromeric chromatin is required for kinetochore function. Proc. Natl. Acad. Sci. U.S.A. 2013; 110:8579–8584. PubMed PMC
Palmer D.K., O’Day K., Trong H.L., Charbonneau H., Margolis R.L.. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl. Acad. Sci. U.S.A. 1991; 88:3734–3738. PubMed PMC
Sullivan K.F., Hechenberger M., Masri K.. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 1994; 127:581–592. PubMed PMC
Fachinetti D., Folco H.D., Nechemia-Arbely Y., Valente L.P., Nguyen K., Wong A.J., Zhu Q., Holland A.J., Desai A., Jansen L.E. et al. .. A two-step mechanism for epigenetic specification of centromere identity and function. Nat. Cell Biol. 2013; 15:1056–1066. PubMed PMC
Howman E.V., Fowler K.J., Newson A.J., Redward S., MacDonald A.C., Kalitsis P., Choo K.H.. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:1148–1153. PubMed PMC
Moore L.L., Roth M.B.. HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J. Cell Biol. 2001; 153:1199–1208. PubMed PMC
Oegema K., Desai A., Rybina S., Kirkham M., Hyman A.A.. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 2001; 153:1209–1226. PubMed PMC
Guse A., Carroll C.W., Moree B., Fuller C.J., Straight A.F.. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature. 2011; 477:354–358. PubMed PMC
Heun P., Erhardt S., Blower M.D., Weiss S., Skora A.D., Karpen G.H.. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell. 2006; 10:303–315. PubMed PMC
Logsdon G.A., Barrey E.J., Bassett E.A., DeNizio J.E., Guo L.Y., Panchenko T., Dawicki-McKenna J.M., Heun P., Black B.E.. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. J. Cell Biol. 2015; 208:521–531. PubMed PMC
Mendiburo M.J., Padeken J., Fulop S., Schepers A., Heun P.. Drosophila CENH3 is sufficient for centromere formation. Science. 2011; 334:686–690. PubMed
Van Hooser A.A., Ouspenski I.I., Gregson H.C., Starr D.A., Yen T.J., Goldberg M.L., Yokomori K., Earnshaw W.C., Sullivan K.F., Brinkley B.R.. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 2001; 114:3529–3542. PubMed
Falk S.J., Guo L.Y., Sekulic N., Smoak E.M., Mani T., Logsdon G.A., Gupta K., Jansen L.E., Van Duyne G.D., Vinogradov S.A. et al. .. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science. 2015; 348:699–703. PubMed PMC
Falk S.J., Lee J., Sekulic N., Sennett M.A., Lee T.H., Black B.E.. CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres. Nat. Struct. Mol. Biol. 2016; 23:204–208. PubMed PMC
Roulland Y., Ouararhni K., Naidenov M., Ramos L., Shuaib M., Syed S.H., Lone I.N., Boopathi R., Fontaine E., Papai G. et al. .. The flexible ends of CENP-A nucleosome are required for mitotic fidelity. Mol. Cell. 2016; 63:674–685. PubMed
Tachiwana H., Kagawa W., Shiga T., Osakabe A., Miya Y., Saito K., Hayashi-Takanaka Y., Oda T., Sato M., Park S.Y. et al. .. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature. 2011; 476:232–235. PubMed
Black B.E., Foltz D.R., Chakravarthy S., Luger K., Woods V.L. Jr, Cleveland D.W.. Structural determinants for generating centromeric chromatin. Nature. 2004; 430:578–582. PubMed
Sekulic N., Bassett E.A., Rogers D.J., Black B.E.. The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature. 2010; 467:347–351. PubMed PMC
Dalal Y., Wang H., Lindsay S., Henikoff S.. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 2007; 5:e218. PubMed PMC
Furuyama T., Henikoff S.. Centromeric nucleosomes induce positive DNA supercoils. Cell. 2009; 138:104–113. PubMed PMC
Henikoff S., Furuyama T.. The unconventional structure of centromeric nucleosomes. Chromosoma. 2012; 121:341–352. PubMed PMC
Williams J.S., Hayashi T., Yanagida M., Russell P.. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol. Cell. 2009; 33:287–298. PubMed PMC
Black B.E., Cleveland D.W.. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell. 2011; 144:471–479. PubMed PMC
Bui M., Dimitriadis E.K., Hoischen C., An E., Quenet D., Giebe S., Nita-Lazar A., Diekmann S., Dalal Y.. Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell. 2012; 150:317–326. PubMed PMC
Bui M., Walkiewicz M.P., Dimitriadis E.K., Dalal Y.. The CENP-A nucleosome: a battle between Dr Jekyll and Mr Hyde. Nucleus. 2013; 4:37–42. PubMed PMC
Padeganeh A., De Rop V., Maddox P.S.. Nucleosomal composition at the centromere: a numbers game. Chromosome Res. 2013; 21:27–36. PubMed PMC
Shivaraju M., Unruh J.R., Slaughter B.D., Mattingly M., Berman J., Gerton J.L.. Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast. Cell. 2012; 150:304–316. PubMed PMC
Chittori S., Hong J., Saunders H., Feng H., Ghirlando R., Kelly A.E., Bai Y., Subramaniam S.. Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science. 2018; 359:339–343. PubMed PMC
Pentakota S., Zhou K., Smith C., Maffini S., Petrovic A., Morgan G.P., Weir J.R., Vetter I.R., Musacchio A., Luger K.. Decoding the centromeric nucleosome through CENP-N. eLife. 2017; 6:e33442. PubMed PMC
Tian T., Li X., Liu Y., Wang C., Liu X., Bi G., Zhang X., Yao X., Zhou Z.H., Zang J.. Molecular basis for CENP-N recognition of CENP-A nucleosome on the human kinetochore. Cell Res. 2018; 28:374–378. PubMed PMC
Black B.E., Jansen L.E., Maddox P.S., Foltz D.R., Desai A.B., Shah J.V., Cleveland D.W.. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell. 2007; 25:309–322. PubMed
Shelby R.D., Vafa O., Sullivan K.F.. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 1997; 136:501–513. PubMed PMC
Vermaak D., Hayden H.S., Henikoff S.. Centromere targeting element within the histone fold domain of Cid. Mol. Cell. Biol. 2002; 22:7553–7561. PubMed PMC
Conde e Silva N., Black B.E., Sivolob A., Filipski J., Cleveland D.W., Prunell A.. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 2007; 370:555–573. PubMed
Kingston I.J., Yung J.S., Singleton M.R.. Biophysical characterization of the centromere-specific nucleosome from budding yeast. J. Biol. Chem. 2011; 286:4021–4026. PubMed PMC
Panchenko T., Sorensen T.C., Woodcock C.L., Kan Z.Y., Wood S., Resch M.G., Luger K., Englander S.W., Hansen J.C., Black B.E.. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:16588–16593. PubMed PMC
Takizawa Y., Ho C.H., Tachiwana H., Matsunami H., Kobayashi W., Suzuki M., Arimura Y., Hori T., Fukagawa T., Ohi M.D. et al. .. Cryo-EM structures of centromeric Tri-nucleosomes containing a central CENP-A nucleosome. Structure. 2020; 28:44–53. PubMed
Ali-Ahmad A., Bilokapic S., Schafer I.B., Halic M., Sekulic N.. CENP-C unwraps the human CENP-A nucleosome through the H2A C-terminal tail. EMBO Rep. 2019; 20:e48913. PubMed PMC
Zhou B.R., Yadav K.N.S., Borgnia M., Hong J., Cao B., Olins A.L., Olins D.E., Bai Y., Zhang P.. Atomic resolution cryo-EM structure of a native-like CENP-A nucleosome aided by an antibody fragment. Nat. Commun. 2019; 10:2301. PubMed PMC
Migl D., Kschonsak M., Arthur C.P., Khin Y., Harrison S.C., Ciferri C., Dimitrova Y.N.. Cryoelectron Microscopy Structure of a Yeast Centromeric Nucleosome at 2.7 A Resolution. Structure. 2020; 28:363–370. PubMed PMC
Danev R., Baumeister W.. Expanding the boundaries of cryo-EM with phase plates. Curr. Opin. Struct. Biol. 2017; 46:87–94. PubMed
Syed S.H., Goutte-Gattat D., Becker N., Meyer S., Shukla M.S., Hayes J.J., Everaers R., Angelov D., Bednar J., Dimitrov S.. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:9620–9625. PubMed PMC
Shukla M.S., Syed S.H., Montel F., Faivre-Moskalenko C., Bednar J., Travers A., Angelov D., Dimitrov S.. Remosomes: RSC generated non-mobilized particles with approximately 180 bp DNA loosely associated with the histone octamer. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:1936–1941. PubMed PMC
Danev R., Tegunov D., Baumeister W.. Using the Volta phase plate with defocus for cryo-EM single particle analysis. eLife. 2017; 6:e23006. PubMed PMC
Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A.. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017; 14:331–332. PubMed PMC
Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016; 193:1–12. PubMed PMC
Scheres S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012; 180:519–530. PubMed PMC
Vasudevan D., Chua E.Y., Davey C.A.. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J. Mol. Biol. 2010; 403:1–10. PubMed
Wriggers W. Conventions and workflows for using Situs. Acta Crystallogr. D Biol. Crystallogr. 2012; 68:344–351. PubMed PMC
Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W. et al. .. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010; 66:213–221. PubMed PMC
Emsley P., Lohkamp B., Scott W.G., Cowtan K.. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010; 66:486–501. PubMed PMC
Chen V.B., Arendall W.B. 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C.. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010; 66:12–21. PubMed PMC
Barad B.A., Echols N., Wang R.Y., Cheng Y., DiMaio F., Adams P.D., Fraser J.S.. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods. 2015; 12:943–946. PubMed PMC
Morin A., Eisenbraun B., Key J., Sanschagrin P.C., Timony M.A., Ottaviano M., Sliz P.. Collaboration gets the most out of software. eLife. 2013; 2:e01456. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E.. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25:1605–1612. PubMed
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A. et al. .. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011; 67:235–242. PubMed PMC
Best R.B., Zhu X., Shim J., Lopes P.E., Mittal J., Feig M., Mackerell A.D. Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 2012; 8:3257–3273. PubMed PMC
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmuller H., MacKerell A.D. Jr. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017; 14:71–73. PubMed PMC
Jorgensen W.L., Chandrasekar J., Madura J.D., Impey R.W., Klein M.L.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983; 79:926–935.
Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A.E., Berendsen H.J.. GROMACS: fast, flexible, and free. J. Comput. Chem. 2005; 26:1701–1718. PubMed
Humphrey W., Dalke A., Schulten K.. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 14:33–38.27–38. PubMed
Shukla M.S., Syed S.H., Goutte-Gattat D., Richard J.L., Montel F., Hamiche A., Travers A., Faivre-Moskalenko C., Bednar J., Hayes J.J. et al. .. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling. Nucleic Acids Res. 2011; 39:2559–2570. PubMed PMC
Chua E.Y., Vogirala V.K., Inian O., Wong A.S., Nordenskiold L., Plitzko J.M., Danev R., Sandin S.. 3.9 A structure of the nucleosome core particle determined by phase-plate cryo-EM. Nucleic Acids Res. 2016; 44:8013–8019. PubMed PMC
Bilokapic S., Strauss M., Halic M.. Histone octamer rearranges to adapt to DNA unwrapping. Nat. Struct. Mol. Biol. 2018; 25:101–108. PubMed PMC
Carugo O., Pongor S.. A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Sci. 2001; 10:1470–1473. PubMed PMC
Chua E.Y., Vasudevan D., Davey G.E., Wu B., Davey C.A.. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res. 2012; 40:6338–6352. PubMed PMC
Winogradoff D., Zhao H., Dalal Y., Papoian G.A.. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome. Sci. Rep. 2015; 5:17038. PubMed PMC
Draizen E.J., Shaytan A.K., Marino-Ramirez L., Talbert P.B., Landsman D., Panchenko A.R.. HistoneDB 2.0: a histone database with variants–an integrated resource to explore histones and their variants. Database (Oxford). 2016; 2016:baw014. PubMed PMC
Kono H., Shirayama K., Arimura Y., Tachiwana H., Kurumizaka H.. Two arginine residues suppress the flexibility of nucleosomal DNA in the canonical nucleosome core. PloS One. 2015; 10:e0120635. PubMed PMC
Hasson D., Panchenko T., Salimian K.J., Salman M.U., Sekulic N., Alonso A., Warburton P.E., Black B.E.. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat. Struct. Mol. Biol. 2013; 20:687–695. PubMed PMC
Ngo T.T., Zhang Q., Zhou R., Yodh J.G., Ha T.. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell. 2015; 160:1135–1144. PubMed PMC
de Bruin L., Tompitak M., Eslami-Mossallam B., Schiessel H.. Why do nucleosomes unwrap asymmetrically. J. Phys. Chem. B. 2016; 120:5855–5863. PubMed