• This record comes from PubMed

Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle reveals differential flexibility of the DNA ends

. 2020 Jun 04 ; 48 (10) : 5735-5748.

Language English Country Great Britain, England Media print

Document type Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't

The histone H3 variant CENP-A marks centromeres epigenetically and is essential for mitotic fidelity. Previous crystallographic studies of the CENP-A nucleosome core particle (NCP) reconstituted with a human α-satellite DNA derivative revealed both DNA ends to be highly flexible, a feature important for CENP-A mitotic functions. However, recent cryo-EM studies of CENP-A NCP complexes comprising primarily Widom 601 DNA reported well-ordered DNA ends. Here, we report the cryo-EM structure of the CENP-A 601 NCP determined by Volta phase-plate imaging. The data reveal that one ('left') 601 DNA end is well ordered whereas the other ('right') end is flexible and partly detached from the histone core, suggesting sequence-dependent dynamics of the DNA termini. Indeed, a molecular dynamics simulation of the CENP-A 601 NCP confirmed the distinct dynamics of the two DNA extremities. Reprocessing the image data using two-fold symmetry yielded a cryo-EM map in which both DNA ends appeared well ordered, indicating that such an artefact may inadvertently arise if NCP asymmetry is lost during image processing. These findings enhance our understanding of the dynamic features that discriminate CENP-A from H3 nucleosomes by revealing that DNA end flexibility can be fine-tuned in a sequence-dependent manner.

See more in PubMed

Earnshaw W.C., Migeon B.R.. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma. 1985; 92:290–296. PubMed

Palmer D.K., O’Day K., Wener M.H., Andrews B.S., Margolis R.L.. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 1987; 104:805–815. PubMed PMC

Regnier V., Vagnarelli P., Fukagawa T., Zerjal T., Burns E., Trouche D., Earnshaw W., Brown W.. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol. Cell. Biol. 2005; 25:3967–3981. PubMed PMC

Goutte-Gattat D., Shuaib M., Ouararhni K., Gautier T., Skoufias D.A., Hamiche A., Dimitrov S.. Phosphorylation of the CENP-A amino-terminus in mitotic centromeric chromatin is required for kinetochore function. Proc. Natl. Acad. Sci. U.S.A. 2013; 110:8579–8584. PubMed PMC

Palmer D.K., O’Day K., Trong H.L., Charbonneau H., Margolis R.L.. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc. Natl. Acad. Sci. U.S.A. 1991; 88:3734–3738. PubMed PMC

Sullivan K.F., Hechenberger M., Masri K.. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 1994; 127:581–592. PubMed PMC

Fachinetti D., Folco H.D., Nechemia-Arbely Y., Valente L.P., Nguyen K., Wong A.J., Zhu Q., Holland A.J., Desai A., Jansen L.E. et al. .. A two-step mechanism for epigenetic specification of centromere identity and function. Nat. Cell Biol. 2013; 15:1056–1066. PubMed PMC

Howman E.V., Fowler K.J., Newson A.J., Redward S., MacDonald A.C., Kalitsis P., Choo K.H.. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:1148–1153. PubMed PMC

Moore L.L., Roth M.B.. HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J. Cell Biol. 2001; 153:1199–1208. PubMed PMC

Oegema K., Desai A., Rybina S., Kirkham M., Hyman A.A.. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 2001; 153:1209–1226. PubMed PMC

Guse A., Carroll C.W., Moree B., Fuller C.J., Straight A.F.. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature. 2011; 477:354–358. PubMed PMC

Heun P., Erhardt S., Blower M.D., Weiss S., Skora A.D., Karpen G.H.. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell. 2006; 10:303–315. PubMed PMC

Logsdon G.A., Barrey E.J., Bassett E.A., DeNizio J.E., Guo L.Y., Panchenko T., Dawicki-McKenna J.M., Heun P., Black B.E.. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. J. Cell Biol. 2015; 208:521–531. PubMed PMC

Mendiburo M.J., Padeken J., Fulop S., Schepers A., Heun P.. Drosophila CENH3 is sufficient for centromere formation. Science. 2011; 334:686–690. PubMed

Van Hooser A.A., Ouspenski I.I., Gregson H.C., Starr D.A., Yen T.J., Goldberg M.L., Yokomori K., Earnshaw W.C., Sullivan K.F., Brinkley B.R.. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 2001; 114:3529–3542. PubMed

Falk S.J., Guo L.Y., Sekulic N., Smoak E.M., Mani T., Logsdon G.A., Gupta K., Jansen L.E., Van Duyne G.D., Vinogradov S.A. et al. .. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science. 2015; 348:699–703. PubMed PMC

Falk S.J., Lee J., Sekulic N., Sennett M.A., Lee T.H., Black B.E.. CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres. Nat. Struct. Mol. Biol. 2016; 23:204–208. PubMed PMC

Roulland Y., Ouararhni K., Naidenov M., Ramos L., Shuaib M., Syed S.H., Lone I.N., Boopathi R., Fontaine E., Papai G. et al. .. The flexible ends of CENP-A nucleosome are required for mitotic fidelity. Mol. Cell. 2016; 63:674–685. PubMed

Tachiwana H., Kagawa W., Shiga T., Osakabe A., Miya Y., Saito K., Hayashi-Takanaka Y., Oda T., Sato M., Park S.Y. et al. .. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature. 2011; 476:232–235. PubMed

Black B.E., Foltz D.R., Chakravarthy S., Luger K., Woods V.L. Jr, Cleveland D.W.. Structural determinants for generating centromeric chromatin. Nature. 2004; 430:578–582. PubMed

Sekulic N., Bassett E.A., Rogers D.J., Black B.E.. The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature. 2010; 467:347–351. PubMed PMC

Dalal Y., Wang H., Lindsay S., Henikoff S.. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 2007; 5:e218. PubMed PMC

Furuyama T., Henikoff S.. Centromeric nucleosomes induce positive DNA supercoils. Cell. 2009; 138:104–113. PubMed PMC

Henikoff S., Furuyama T.. The unconventional structure of centromeric nucleosomes. Chromosoma. 2012; 121:341–352. PubMed PMC

Williams J.S., Hayashi T., Yanagida M., Russell P.. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol. Cell. 2009; 33:287–298. PubMed PMC

Black B.E., Cleveland D.W.. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell. 2011; 144:471–479. PubMed PMC

Bui M., Dimitriadis E.K., Hoischen C., An E., Quenet D., Giebe S., Nita-Lazar A., Diekmann S., Dalal Y.. Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell. 2012; 150:317–326. PubMed PMC

Bui M., Walkiewicz M.P., Dimitriadis E.K., Dalal Y.. The CENP-A nucleosome: a battle between Dr Jekyll and Mr Hyde. Nucleus. 2013; 4:37–42. PubMed PMC

Padeganeh A., De Rop V., Maddox P.S.. Nucleosomal composition at the centromere: a numbers game. Chromosome Res. 2013; 21:27–36. PubMed PMC

Shivaraju M., Unruh J.R., Slaughter B.D., Mattingly M., Berman J., Gerton J.L.. Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast. Cell. 2012; 150:304–316. PubMed PMC

Chittori S., Hong J., Saunders H., Feng H., Ghirlando R., Kelly A.E., Bai Y., Subramaniam S.. Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science. 2018; 359:339–343. PubMed PMC

Pentakota S., Zhou K., Smith C., Maffini S., Petrovic A., Morgan G.P., Weir J.R., Vetter I.R., Musacchio A., Luger K.. Decoding the centromeric nucleosome through CENP-N. eLife. 2017; 6:e33442. PubMed PMC

Tian T., Li X., Liu Y., Wang C., Liu X., Bi G., Zhang X., Yao X., Zhou Z.H., Zang J.. Molecular basis for CENP-N recognition of CENP-A nucleosome on the human kinetochore. Cell Res. 2018; 28:374–378. PubMed PMC

Black B.E., Jansen L.E., Maddox P.S., Foltz D.R., Desai A.B., Shah J.V., Cleveland D.W.. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell. 2007; 25:309–322. PubMed

Shelby R.D., Vafa O., Sullivan K.F.. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 1997; 136:501–513. PubMed PMC

Vermaak D., Hayden H.S., Henikoff S.. Centromere targeting element within the histone fold domain of Cid. Mol. Cell. Biol. 2002; 22:7553–7561. PubMed PMC

Conde e Silva N., Black B.E., Sivolob A., Filipski J., Cleveland D.W., Prunell A.. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 2007; 370:555–573. PubMed

Kingston I.J., Yung J.S., Singleton M.R.. Biophysical characterization of the centromere-specific nucleosome from budding yeast. J. Biol. Chem. 2011; 286:4021–4026. PubMed PMC

Panchenko T., Sorensen T.C., Woodcock C.L., Kan Z.Y., Wood S., Resch M.G., Luger K., Englander S.W., Hansen J.C., Black B.E.. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:16588–16593. PubMed PMC

Takizawa Y., Ho C.H., Tachiwana H., Matsunami H., Kobayashi W., Suzuki M., Arimura Y., Hori T., Fukagawa T., Ohi M.D. et al. .. Cryo-EM structures of centromeric Tri-nucleosomes containing a central CENP-A nucleosome. Structure. 2020; 28:44–53. PubMed

Ali-Ahmad A., Bilokapic S., Schafer I.B., Halic M., Sekulic N.. CENP-C unwraps the human CENP-A nucleosome through the H2A C-terminal tail. EMBO Rep. 2019; 20:e48913. PubMed PMC

Zhou B.R., Yadav K.N.S., Borgnia M., Hong J., Cao B., Olins A.L., Olins D.E., Bai Y., Zhang P.. Atomic resolution cryo-EM structure of a native-like CENP-A nucleosome aided by an antibody fragment. Nat. Commun. 2019; 10:2301. PubMed PMC

Migl D., Kschonsak M., Arthur C.P., Khin Y., Harrison S.C., Ciferri C., Dimitrova Y.N.. Cryoelectron Microscopy Structure of a Yeast Centromeric Nucleosome at 2.7 A Resolution. Structure. 2020; 28:363–370. PubMed PMC

Danev R., Baumeister W.. Expanding the boundaries of cryo-EM with phase plates. Curr. Opin. Struct. Biol. 2017; 46:87–94. PubMed

Syed S.H., Goutte-Gattat D., Becker N., Meyer S., Shukla M.S., Hayes J.J., Everaers R., Angelov D., Bednar J., Dimitrov S.. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:9620–9625. PubMed PMC

Shukla M.S., Syed S.H., Montel F., Faivre-Moskalenko C., Bednar J., Travers A., Angelov D., Dimitrov S.. Remosomes: RSC generated non-mobilized particles with approximately 180 bp DNA loosely associated with the histone octamer. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:1936–1941. PubMed PMC

Danev R., Tegunov D., Baumeister W.. Using the Volta phase plate with defocus for cryo-EM single particle analysis. eLife. 2017; 6:e23006. PubMed PMC

Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A.. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017; 14:331–332. PubMed PMC

Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016; 193:1–12. PubMed PMC

Scheres S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 2012; 180:519–530. PubMed PMC

Vasudevan D., Chua E.Y., Davey C.A.. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J. Mol. Biol. 2010; 403:1–10. PubMed

Wriggers W. Conventions and workflows for using Situs. Acta Crystallogr. D Biol. Crystallogr. 2012; 68:344–351. PubMed PMC

Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W. et al. .. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010; 66:213–221. PubMed PMC

Emsley P., Lohkamp B., Scott W.G., Cowtan K.. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010; 66:486–501. PubMed PMC

Chen V.B., Arendall W.B. 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C.. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010; 66:12–21. PubMed PMC

Barad B.A., Echols N., Wang R.Y., Cheng Y., DiMaio F., Adams P.D., Fraser J.S.. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods. 2015; 12:943–946. PubMed PMC

Morin A., Eisenbraun B., Key J., Sanschagrin P.C., Timony M.A., Ottaviano M., Sliz P.. Collaboration gets the most out of software. eLife. 2013; 2:e01456. PubMed PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E.. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25:1605–1612. PubMed

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A. et al. .. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011; 67:235–242. PubMed PMC

Best R.B., Zhu X., Shim J., Lopes P.E., Mittal J., Feig M., Mackerell A.D. Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 2012; 8:3257–3273. PubMed PMC

Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmuller H., MacKerell A.D. Jr. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017; 14:71–73. PubMed PMC

Jorgensen W.L., Chandrasekar J., Madura J.D., Impey R.W., Klein M.L.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983; 79:926–935.

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A.E., Berendsen H.J.. GROMACS: fast, flexible, and free. J. Comput. Chem. 2005; 26:1701–1718. PubMed

Humphrey W., Dalke A., Schulten K.. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 14:33–38.27–38. PubMed

Shukla M.S., Syed S.H., Goutte-Gattat D., Richard J.L., Montel F., Hamiche A., Travers A., Faivre-Moskalenko C., Bednar J., Hayes J.J. et al. .. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling. Nucleic Acids Res. 2011; 39:2559–2570. PubMed PMC

Chua E.Y., Vogirala V.K., Inian O., Wong A.S., Nordenskiold L., Plitzko J.M., Danev R., Sandin S.. 3.9 A structure of the nucleosome core particle determined by phase-plate cryo-EM. Nucleic Acids Res. 2016; 44:8013–8019. PubMed PMC

Bilokapic S., Strauss M., Halic M.. Histone octamer rearranges to adapt to DNA unwrapping. Nat. Struct. Mol. Biol. 2018; 25:101–108. PubMed PMC

Carugo O., Pongor S.. A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Sci. 2001; 10:1470–1473. PubMed PMC

Chua E.Y., Vasudevan D., Davey G.E., Wu B., Davey C.A.. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res. 2012; 40:6338–6352. PubMed PMC

Winogradoff D., Zhao H., Dalal Y., Papoian G.A.. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome. Sci. Rep. 2015; 5:17038. PubMed PMC

Draizen E.J., Shaytan A.K., Marino-Ramirez L., Talbert P.B., Landsman D., Panchenko A.R.. HistoneDB 2.0: a histone database with variants–an integrated resource to explore histones and their variants. Database (Oxford). 2016; 2016:baw014. PubMed PMC

Kono H., Shirayama K., Arimura Y., Tachiwana H., Kurumizaka H.. Two arginine residues suppress the flexibility of nucleosomal DNA in the canonical nucleosome core. PloS One. 2015; 10:e0120635. PubMed PMC

Hasson D., Panchenko T., Salimian K.J., Salman M.U., Sekulic N., Alonso A., Warburton P.E., Black B.E.. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat. Struct. Mol. Biol. 2013; 20:687–695. PubMed PMC

Ngo T.T., Zhang Q., Zhou R., Yodh J.G., Ha T.. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell. 2015; 160:1135–1144. PubMed PMC

de Bruin L., Tompitak M., Eslami-Mossallam B., Schiessel H.. Why do nucleosomes unwrap asymmetrically. J. Phys. Chem. B. 2016; 120:5855–5863. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...