Quantum-Mechanical Assessment of the Energetics of Silver Decahedron Nanoparticles
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CEITEC 2020 (LQ1601)
Ministerstvo Školství, Mládeže a Tělovýchovy
GA14-12653S
Grantová Agentura České Republiky
GA 16-24711S
Grantová Agentura České Republiky
PubMed
32316217
PubMed Central
PMC7221515
DOI
10.3390/nano10040767
PII: nano10040767
Knihovny.cz E-resources
- Keywords
- ab initio calculations, decahedron, excess energy, nanoparticles, silver, thermodynamics,
- Publication type
- Journal Article MeSH
We present a quantum-mechanical study of silver decahedral nanoclusters and nanoparticles containing from 1 to 181 atoms in their static atomic configurations corresponding to the minimum of the ab initio computed total energies. Our thermodynamic analysis compares T = 0 K excess energies (without any excitations) obtained from a phenomenological approach, which mostly uses bulk-related properties, with excess energies from ab initio calculations of actual nanoclusters/nanoparticles. The phenomenological thermodynamic modeling employs (i) the bulk reference energy, (ii) surface energies obtained for infinite planar (bulk-related) surfaces and (iii) the bulk atomic volume. We show that it can predict the excess energy (per atom) of nanoclusters/nanoparticles containing as few as 7 atoms with the error lower than 3%. The only information related to the nanoclusters/nanoparticles of interest, which enters the phenomenological modeling, is the number of atoms in the nanocluster/nanoparticle, the shape and the crystallographic orientation(s) of facets. The agreement between both approaches is conditioned by computing the bulk-related properties with the same computational parameters as in the case of the nanoclusters/nanoparticles but, importantly, the phenomenological approach is much less computationally demanding. Our work thus indicates that it is possible to substantially reduce computational demands when computing excess energies of nanoclusters and nanoparticles by ab initio methods.
Department of Chemistry Faculty of Science Masaryk University Kotlářská 2 611 37 Brno Czech Republic
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 616 62 Brno Czech Republic
See more in PubMed
Daniel S.C.G.K., Tharmaraj V., Sironmani T.A., Pitchumani K. Toxicity and Immunological Activity of Silver Nanoparticles. Appl. Clay Sci. 2010;48:547–551. doi: 10.1016/j.clay.2010.03.001. DOI
Galdiero S., Falanga A., Vitiello M., Cantisani M., Marra V., Galdiero M. Silver Nanoparticles as Potential Antiviral Agents. Molecules. 2011;16:8894–8918. doi: 10.3390/molecules16108894. PubMed DOI PMC
Bindhu M.R., Umadevi M. Silver and Gold Nanoparticles for Sensor and Antibacterial Applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;128:37–45. doi: 10.1016/j.saa.2014.02.119. PubMed DOI
Chapman R., Mulvaney P. Electro-Optical Shifts in Silver Nanoparticle Films. Chem. Phys. Lett. 2001;349:358–362. doi: 10.1016/S0009-2614(01)01145-9. DOI
Grouchko M., Kamyshny A., Ben-Ami K., Magdassi S. Synthesis of Copper Nanoparticles Catalyzed by Pre-Formed Silver Nanoparticles. J. Nanoparticle Res. 2009;11:713–716. doi: 10.1007/s11051-007-9324-5. DOI
Sopoušek J., Buršík J., Zálešák J., Buršíková V., Brož P. Interaction of Silver Nanopowder with Copper Substrate. Sci. Sinter. 2011;43:33–38. doi: 10.2298/SOS1101033S. DOI
Sopoušek J., Buršík J., Zálešák J., Pešina Z. Silver Nanoparticles Sintering at Low Temperature on a Copper Substrate: In Situ Characterisation under Inert Atmosphere and Air. J. Min. Metall. Sect. B Metall. 2012;48:63–71. doi: 10.2298/JMMB110718007S. DOI
Ali S., Myasnichenko V.S., Neyts E.C. Size-Dependent Strain and Surface Energies of Gold Nanoclusters. Phys. Chem. Chem. Phys. 2016;18:792–800. doi: 10.1039/C5CP06153A. PubMed DOI
Patala S., Marks L.D., De La Cruz M.O. Elastic Strain Energy Effects in Faceted Decahedral Nanoparticles. J. Phys. Chem. C. 2013;117:1485–1494. doi: 10.1021/jp310045g. DOI
Wang J., Lu X.G., Sundman B., Su X. Thermodynamic Assessment of the Au-Ni System. Calphad Comput. Coupling Phase Diagrams Thermochem. 2005;29:263–268. doi: 10.1016/j.calphad.2005.09.004. DOI
Lu H.M., Li P.Y., Cao Z.H., Meng X.K. Size-, Shape-, and Dimensionality-Dependent Melting Temperatures Of. J. Phys. Chem. C. 2009;113:7598–7602. doi: 10.1021/jp900314q. DOI
Qi W.H., Wang M.P. Size and Shape Dependent Melting Temperature of Metallic Nanoparticles. Mater. Chem. Phys. 2004;88:280–284. doi: 10.1016/j.matchemphys.2004.04.026. DOI
Barnard A.S. Using Theory and Modelling to Investigate Shape at the Nanoscale. J. Mater. Chem. 2006;16:813–815. doi: 10.1039/B513095F. DOI
Zhang J.M., Ma F., Xu K.W. Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl. Surf. Sci. 2004;229:34–42. doi: 10.1016/j.apsusc.2003.09.050. DOI
Quesne M.G., Roldan A., de Leeuw N.H., Catlow C.R.A. Bulk and surface properties of metal carbides: Implications for catalysis. Phys. Chem. Chem. Phys. 2018;20:6905–6916. doi: 10.1039/C7CP06336A. PubMed DOI
Gao Y., Jiang P., Song L., Wang J.X., Liu L.F., Liu D.F., Xiang Y.J., Zhang Z.X., Zhao X.W., Dou X.Y., et al. Studies on Silver Nanodecahedrons Synthesized by PVP-Assisted N,N-Dimethylformamide (DMF) Reduction. J. Cryst. Growth. 2006;289:376–380. doi: 10.1016/j.jcrysgro.2005.11.123. DOI
Sneed B.T., Young A.P., Tsung C.K. Building up Strain in Colloidal Metal Nanoparticle Catalysts. Nanoscale. 2015;7:12248–12265. doi: 10.1039/C5NR02529J. PubMed DOI
Pietrobon B., Kitaev V. Photochemical Synthesis of Monodisperse Size-Controlled Silver Decahedral Nanoparticles and Their Remarkable Optical Properties. Chem. Mater. 2008;20:5186–5190. doi: 10.1021/cm800926u. DOI
Zhao H., Qi W., Ji W., Wang T., Peng H., Wang Q., Jia Y., He J. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor. J. Nanoparticle Res. 2017;19:162. doi: 10.1007/s11051-017-3856-0. DOI
Hohenberg P., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Sopoušek J., Vřešťál J., Pinkas J., Brož P., Buršík J., Styskalik A., Skoda D., Zobač O., Lee J. Cu–Ni Nanoalloy Phase Diagram – Prediction and Experiment. Calphad. 2014;45:33–39. doi: 10.1016/j.calphad.2013.11.004. DOI
Sopoušek J., Pinkas J., Brož P., Buršík J., Vykoukal V., Škoda D., Stýskalík A., Zobač O., Vřešťál J., Hrdlička A., et al. Ag-Cu Colloid Synthesis: Bimetallic Nanoparticle Characterisation and Thermal Treatment. J. Nanomater. 2014;2014:638964. doi: 10.1155/2014/638964. DOI
Kroupa A., Káňa T., Buršík J., Zemanová A., Šob M. Modelling of Phase Diagrams of Nanoalloys with Complex Metallic Phases: Application to Ni–Sn. Phys. Chem. Chem. Phys. 2015;17:28200–28210. doi: 10.1039/C5CP00281H. PubMed DOI
Kroupa A., Vykoukal V., Káňa T., Zemanová A., Pinkas J., Šob M. The Theoretical and Experimental Study of the Sb-Sn Nano-Alloys. Calphad. 2019;64:90–96. doi: 10.1016/j.calphad.2018.11.004. DOI
Vykoukal V., Zelenka F., Bursik J., Kana T., Kroupa A., Pinkas J. Thermal properties of Ag@Ni core-shell nanoparticles. Calphad. 2020;69:101741. doi: 10.1016/j.calphad.2020.101741. DOI
Wang L., Šob M., Havránková J., Vřešťál J. First-principles Calculations of Formation Energy in Cr-based σ-phases; Proceedings of the CALPHAD XXVII; Beijing, China. 17–22 May 1998; p. 14. Abstract Book.
Vřešťál J., Houserová J., Šob M., Friák M. Calculation of Phase Equilibria with σ-phase in Some Cr-based Systems Using First-principles Calculation Results; Proceedings of the 16th Discussion Meeting on Thermodynamics of Alloys (TOFA); Stockholm, Sweden. 8–11 May 2000; p. 33. Abstract Book.
Friák M., Šob M., Houserová J., Vřešťál J. Modeling the σ-phase Based on First-principles Calculations Results; Proceedings of the CALPHAD XXIX; Cambridge, MA, USA. 18–23 June 2000; p. 4. Abstract Book.
Vřešťál J. Recent progress in modelling of sigma-phase. Arch. Metall. 2001;46:239–247.
Havránková J., Vřešťál J., Wang L.G., Šob M. Ab initio analysis of energetics of σ-phase formation in Cr-based systems. Phys. Rev. B. 2001;63:174104. doi: 10.1103/PhysRevB.63.174104. DOI
Burton B., Dupin N., Fries S., Grimvall G., Guillermet A., Miodownik P., Oates W., Vinograd V. Using ab initio calculations in the CALPHAD environment. Z. Met. 2001;92:514–525.
Kaufman L., Turchi P., Huang W., Liu Z.K. Thermodynamics of the Cr-Ta-W system by combining the Ab Initio and CALPHAD methods. Calphad. 2001;25:419–433. doi: 10.1016/S0364-5916(01)00061-X. DOI
Houserová J., Vřešťál J., Šob M. Phase diagram calculations in the Co–Mo and Fe–Mo systems using first-principles results for the sigma phase. Calphad. 2005;29:133–139. doi: 10.1016/j.calphad.2005.06.002. DOI
Turchi P.E.A., Abrikosov I.A., Burton B., Fries S.G., Grimvall G., Kaufman L., Korzhavyi P., Manga V.R., Ohno M., Pisch A., et al. Interface between quantum-mechanical-based approaches, experiments, and CALPHAD methodology. Calphad-Comput. Coupling Phase Diagrams Thermochem. 2007;31:4–27. doi: 10.1016/j.calphad.2006.02.009. DOI
Joubert J.M. Crystal chemistry and Calphad modeling of the sigma phase. Prog. Mater. Sci. 2008;53:528–583. doi: 10.1016/j.pmatsci.2007.04.001. DOI
Liu Z.K. First-Principles Calculations and CALPHAD Modeling of Thermodynamics. J. Phase Equilibria Diffus. 2009;30:517–534. doi: 10.1007/s11669-009-9570-6. DOI
Cacciamani G., Dinsdale A., Palumbo M., Pasturel A. The Fe-Ni system: Thermodynamic modelling assisted by atomistic calculations. Intermetallics. 2010;18:1148–1162. doi: 10.1016/j.intermet.2010.02.026. DOI
Schmetterer C., Khvan A., Jacob A., Hallstedt B., Markus T. A New Theoretical Study of the Cr-Nb System. J. Phase Equilibria Diffus. 2014;35:434–444. doi: 10.1007/s11669-014-0313-y. DOI
Jacob A., Schmetterer C., Singheiser L., Gray-Weale A., Hallstedt B., Watson A. Modeling of Fe-W phase diagram using first principles and phonons calculations. CALPHAD-Comput. Coupling Phase Diagrams Thermochem. 2015;50:92–104. doi: 10.1016/j.calphad.2015.04.010. DOI
Bigdeli S., Ehtehsami H., Chen Q., Mao H., Korzhavy P., Selleby M. New description of metastable hcp phase for unaries Fe and Mn: Coupling between first-principles calculations and CALPHAD modeling. Phys. Status Solidi Basic Solid State Phys. 2016;253:1830–1836. doi: 10.1002/pssb.201600096. DOI
Wang W., Chen H.L., Larsson H., Mao H. Thermodynamic constitution of the Al–Cu–Ni system modeled by CALPHAD and ab initio methodology for designing high entropy alloys. Calphad. 2019;65:346–369. doi: 10.1016/j.calphad.2019.03.011. DOI
Leitner J., Sedmidubský D. Thermodynamic Equilibria in Systems with Nanoparticles. In: Šesták J., Hubík P., Mareš J.J., editors. Thermal Physics and Thermal Analysis: From Macro to Micro, Highlighting Thermodynamics, Kinetics and Nanomaterials. Springer International Publishing; Cham, Switzerlands: 2017. pp. 385–402. Hot Topics in Thermal Analysis and Calorimetry. DOI
Hucht A., Sahoo S., Sil S., Entel P. Effect of anisotropy on small magnetic clusters. Phys. Rev. B. 2011;84:104438. doi: 10.1103/PhysRevB.84.104438. DOI
Kaptay G. The Gibbs Equation versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-Materials. J. Nanosci. Nanotechnol. 2012;12:2625–2633. doi: 10.1166/jnn.2012.5774. PubMed DOI
Molleman B., Hiemstra T. Size and Shape Dependency of the Surface Energy of Metallic Nanoparticles: Unifying the Atomic and Thermodynamic Approaches. Phys. Chem. Chem. Phys. 2018;20:20575–20587. doi: 10.1039/C8CP02346H. PubMed DOI
Lee J., Tanaka T., Lee J., Mori H. Effect of Substrates on the Melting Temperature of Gold Nanoparticles. Calphad Comput. Coupling Phase Diagrams Thermochem. 2007;31:105–111. doi: 10.1016/j.calphad.2006.10.001. DOI
Sopoušek J., Vřešťál J., Zemanová A., Buršík J. Phase Diagram Prediction and Particle Characterization of Sn-Ag Nano Alloy for Low Melting Point Lead-Free Solders. J. Min. Metall. Sect. B Metall. 2012;48:419–425. doi: 10.2298/JMMB120121032S. DOI
Yang X., Lu T., Kim T. Effective Thermal Conductivity Modelling for Closed-Cell Porous Media with Analytical Shape Factors. Transp. Porous. Med. 2013;100:211–244. doi: 10.1007/s11242-013-0212-4. DOI
Tyuterev V., Vast N. Murnaghan’s Equation of State for the Electronic Ground State Energy. Comput. Mater. Sci. 2006;38:350–353. doi: 10.1016/j.commatsci.2005.08.012. DOI
Murnaghan F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA. 1944;30:244–247. doi: 10.1073/pnas.30.9.244. PubMed DOI PMC
Timoshenko S., Goodier J.N., editors. Theory of Elasticity. McGraw-Hill; New York, NY, USA: 1951.
Kresse G., Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Hjorth Larsen A., Jørgen Mortensen J., Blomqvist J., Castelli I.E., Christensen R., Dułak M., Friis J., Groves M.N., Hammer B., Hargus C., et al. The Atomic Simulation Environment—A Python Library for Working with Atoms. Volume 29. IOP Publishing; Bristol, UK: 2017. PubMed DOI
Guisbiers G., Abudukelimu G. Influence of Nanomorphology on the Melting and Catalytic Properties of Convex Polyhedral Nanoparticles. J. Nanoparticle Res. 2013;15:1431. doi: 10.1007/s11051-013-1431-x. DOI
He L.B., Zhang L., Tan X.D., Tang L.P., Xu T., Zhou Y.L., Ren Z.Y., Wang Y., Teng C.Y., Sun L.T., et al. Surface Energy and Surface Stability of Ag Nanocrystals at Elevated Temperatures and Their Dominance in Sublimation-Induced Shape Evolution. Small. 2017;13:1700743. doi: 10.1002/smll.201700743. PubMed DOI
Vitos L., Ruban A.V., Skriver H.L., Kollár J. The Surface Energy of Metals. Surf. Sci. 1998;411:186–202. doi: 10.1016/S0039-6028(98)00363-X. DOI
Properties: Silver—Applications and Properties of Silver. [(accessed on 12 April 2020)]; Available online: https://www.azom.com/properties.aspx?ArticleID=600.
Holec D., Dumitraschkewitz P., Vollath D., Fischer F.D. Surface Energy of Au Nanoparticles Depending on Their Size and Shape. Nanomaterials. 2020;10:484. doi: 10.3390/nano10030484. PubMed DOI PMC
Vollath D., Fischer F.D., Holec D. Surface Energy of Nanoparticles—Influence of Particle Size and Structure. Beilstein J. Nanotechnol. 2018;9:2265–2276. doi: 10.3762/bjnano.9.211. PubMed DOI PMC
Holec D., Fischer F.D., Vollath D. Structure and surface energy of Au55 nanoparticles: An ab initio study. Comput. Mater. Sci. 2017;134:137–144. doi: 10.1016/j.commatsci.2017.03.038. DOI
Momma K., Izumi F. An integrated three-dimensional visualization system VESTA using wxWidgets. Comm. Crystallogr. Comput. Iucr Newslett. 2006;7:106. doi: 10.1103/PhysRevB.88.174103. DOI
Momma K., Izumi F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008;41:653–658. doi: 10.1107/S0021889808012016. DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Best-Practice Aspects of Quantum-Computer Calculations: A Case Study of the Hydrogen Molecule
Editorial for the Special Issue on Computational Quantum Physics and Chemistry of Nanomaterials