• This record comes from PubMed

Quantum-Mechanical Assessment of the Energetics of Silver Decahedron Nanoparticles

. 2020 Apr 16 ; 10 (4) : . [epub] 20200416

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CEITEC 2020 (LQ1601) Ministerstvo Školství, Mládeže a Tělovýchovy
GA14-12653S Grantová Agentura České Republiky
GA 16-24711S Grantová Agentura České Republiky

We present a quantum-mechanical study of silver decahedral nanoclusters and nanoparticles containing from 1 to 181 atoms in their static atomic configurations corresponding to the minimum of the ab initio computed total energies. Our thermodynamic analysis compares T = 0 K excess energies (without any excitations) obtained from a phenomenological approach, which mostly uses bulk-related properties, with excess energies from ab initio calculations of actual nanoclusters/nanoparticles. The phenomenological thermodynamic modeling employs (i) the bulk reference energy, (ii) surface energies obtained for infinite planar (bulk-related) surfaces and (iii) the bulk atomic volume. We show that it can predict the excess energy (per atom) of nanoclusters/nanoparticles containing as few as 7 atoms with the error lower than 3%. The only information related to the nanoclusters/nanoparticles of interest, which enters the phenomenological modeling, is the number of atoms in the nanocluster/nanoparticle, the shape and the crystallographic orientation(s) of facets. The agreement between both approaches is conditioned by computing the bulk-related properties with the same computational parameters as in the case of the nanoclusters/nanoparticles but, importantly, the phenomenological approach is much less computationally demanding. Our work thus indicates that it is possible to substantially reduce computational demands when computing excess energies of nanoclusters and nanoparticles by ab initio methods.

See more in PubMed

Daniel S.C.G.K., Tharmaraj V., Sironmani T.A., Pitchumani K. Toxicity and Immunological Activity of Silver Nanoparticles. Appl. Clay Sci. 2010;48:547–551. doi: 10.1016/j.clay.2010.03.001. DOI

Galdiero S., Falanga A., Vitiello M., Cantisani M., Marra V., Galdiero M. Silver Nanoparticles as Potential Antiviral Agents. Molecules. 2011;16:8894–8918. doi: 10.3390/molecules16108894. PubMed DOI PMC

Bindhu M.R., Umadevi M. Silver and Gold Nanoparticles for Sensor and Antibacterial Applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;128:37–45. doi: 10.1016/j.saa.2014.02.119. PubMed DOI

Chapman R., Mulvaney P. Electro-Optical Shifts in Silver Nanoparticle Films. Chem. Phys. Lett. 2001;349:358–362. doi: 10.1016/S0009-2614(01)01145-9. DOI

Grouchko M., Kamyshny A., Ben-Ami K., Magdassi S. Synthesis of Copper Nanoparticles Catalyzed by Pre-Formed Silver Nanoparticles. J. Nanoparticle Res. 2009;11:713–716. doi: 10.1007/s11051-007-9324-5. DOI

Sopoušek J., Buršík J., Zálešák J., Buršíková V., Brož P. Interaction of Silver Nanopowder with Copper Substrate. Sci. Sinter. 2011;43:33–38. doi: 10.2298/SOS1101033S. DOI

Sopoušek J., Buršík J., Zálešák J., Pešina Z. Silver Nanoparticles Sintering at Low Temperature on a Copper Substrate: In Situ Characterisation under Inert Atmosphere and Air. J. Min. Metall. Sect. B Metall. 2012;48:63–71. doi: 10.2298/JMMB110718007S. DOI

Ali S., Myasnichenko V.S., Neyts E.C. Size-Dependent Strain and Surface Energies of Gold Nanoclusters. Phys. Chem. Chem. Phys. 2016;18:792–800. doi: 10.1039/C5CP06153A. PubMed DOI

Patala S., Marks L.D., De La Cruz M.O. Elastic Strain Energy Effects in Faceted Decahedral Nanoparticles. J. Phys. Chem. C. 2013;117:1485–1494. doi: 10.1021/jp310045g. DOI

Wang J., Lu X.G., Sundman B., Su X. Thermodynamic Assessment of the Au-Ni System. Calphad Comput. Coupling Phase Diagrams Thermochem. 2005;29:263–268. doi: 10.1016/j.calphad.2005.09.004. DOI

Lu H.M., Li P.Y., Cao Z.H., Meng X.K. Size-, Shape-, and Dimensionality-Dependent Melting Temperatures Of. J. Phys. Chem. C. 2009;113:7598–7602. doi: 10.1021/jp900314q. DOI

Qi W.H., Wang M.P. Size and Shape Dependent Melting Temperature of Metallic Nanoparticles. Mater. Chem. Phys. 2004;88:280–284. doi: 10.1016/j.matchemphys.2004.04.026. DOI

Barnard A.S. Using Theory and Modelling to Investigate Shape at the Nanoscale. J. Mater. Chem. 2006;16:813–815. doi: 10.1039/B513095F. DOI

Zhang J.M., Ma F., Xu K.W. Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl. Surf. Sci. 2004;229:34–42. doi: 10.1016/j.apsusc.2003.09.050. DOI

Quesne M.G., Roldan A., de Leeuw N.H., Catlow C.R.A. Bulk and surface properties of metal carbides: Implications for catalysis. Phys. Chem. Chem. Phys. 2018;20:6905–6916. doi: 10.1039/C7CP06336A. PubMed DOI

Gao Y., Jiang P., Song L., Wang J.X., Liu L.F., Liu D.F., Xiang Y.J., Zhang Z.X., Zhao X.W., Dou X.Y., et al. Studies on Silver Nanodecahedrons Synthesized by PVP-Assisted N,N-Dimethylformamide (DMF) Reduction. J. Cryst. Growth. 2006;289:376–380. doi: 10.1016/j.jcrysgro.2005.11.123. DOI

Sneed B.T., Young A.P., Tsung C.K. Building up Strain in Colloidal Metal Nanoparticle Catalysts. Nanoscale. 2015;7:12248–12265. doi: 10.1039/C5NR02529J. PubMed DOI

Pietrobon B., Kitaev V. Photochemical Synthesis of Monodisperse Size-Controlled Silver Decahedral Nanoparticles and Their Remarkable Optical Properties. Chem. Mater. 2008;20:5186–5190. doi: 10.1021/cm800926u. DOI

Zhao H., Qi W., Ji W., Wang T., Peng H., Wang Q., Jia Y., He J. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor. J. Nanoparticle Res. 2017;19:162. doi: 10.1007/s11051-017-3856-0. DOI

Hohenberg P., Kohn W. Inhomogeneous Electron Gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Sopoušek J., Vřešťál J., Pinkas J., Brož P., Buršík J., Styskalik A., Skoda D., Zobač O., Lee J. Cu–Ni Nanoalloy Phase Diagram – Prediction and Experiment. Calphad. 2014;45:33–39. doi: 10.1016/j.calphad.2013.11.004. DOI

Sopoušek J., Pinkas J., Brož P., Buršík J., Vykoukal V., Škoda D., Stýskalík A., Zobač O., Vřešťál J., Hrdlička A., et al. Ag-Cu Colloid Synthesis: Bimetallic Nanoparticle Characterisation and Thermal Treatment. J. Nanomater. 2014;2014:638964. doi: 10.1155/2014/638964. DOI

Kroupa A., Káňa T., Buršík J., Zemanová A., Šob M. Modelling of Phase Diagrams of Nanoalloys with Complex Metallic Phases: Application to Ni–Sn. Phys. Chem. Chem. Phys. 2015;17:28200–28210. doi: 10.1039/C5CP00281H. PubMed DOI

Kroupa A., Vykoukal V., Káňa T., Zemanová A., Pinkas J., Šob M. The Theoretical and Experimental Study of the Sb-Sn Nano-Alloys. Calphad. 2019;64:90–96. doi: 10.1016/j.calphad.2018.11.004. DOI

Vykoukal V., Zelenka F., Bursik J., Kana T., Kroupa A., Pinkas J. Thermal properties of Ag@Ni core-shell nanoparticles. Calphad. 2020;69:101741. doi: 10.1016/j.calphad.2020.101741. DOI

Wang L., Šob M., Havránková J., Vřešťál J. First-principles Calculations of Formation Energy in Cr-based σ-phases; Proceedings of the CALPHAD XXVII; Beijing, China. 17–22 May 1998; p. 14. Abstract Book.

Vřešťál J., Houserová J., Šob M., Friák M. Calculation of Phase Equilibria with σ-phase in Some Cr-based Systems Using First-principles Calculation Results; Proceedings of the 16th Discussion Meeting on Thermodynamics of Alloys (TOFA); Stockholm, Sweden. 8–11 May 2000; p. 33. Abstract Book.

Friák M., Šob M., Houserová J., Vřešťál J. Modeling the σ-phase Based on First-principles Calculations Results; Proceedings of the CALPHAD XXIX; Cambridge, MA, USA. 18–23 June 2000; p. 4. Abstract Book.

Vřešťál J. Recent progress in modelling of sigma-phase. Arch. Metall. 2001;46:239–247.

Havránková J., Vřešťál J., Wang L.G., Šob M. Ab initio analysis of energetics of σ-phase formation in Cr-based systems. Phys. Rev. B. 2001;63:174104. doi: 10.1103/PhysRevB.63.174104. DOI

Burton B., Dupin N., Fries S., Grimvall G., Guillermet A., Miodownik P., Oates W., Vinograd V. Using ab initio calculations in the CALPHAD environment. Z. Met. 2001;92:514–525.

Kaufman L., Turchi P., Huang W., Liu Z.K. Thermodynamics of the Cr-Ta-W system by combining the Ab Initio and CALPHAD methods. Calphad. 2001;25:419–433. doi: 10.1016/S0364-5916(01)00061-X. DOI

Houserová J., Vřešťál J., Šob M. Phase diagram calculations in the Co–Mo and Fe–Mo systems using first-principles results for the sigma phase. Calphad. 2005;29:133–139. doi: 10.1016/j.calphad.2005.06.002. DOI

Turchi P.E.A., Abrikosov I.A., Burton B., Fries S.G., Grimvall G., Kaufman L., Korzhavyi P., Manga V.R., Ohno M., Pisch A., et al. Interface between quantum-mechanical-based approaches, experiments, and CALPHAD methodology. Calphad-Comput. Coupling Phase Diagrams Thermochem. 2007;31:4–27. doi: 10.1016/j.calphad.2006.02.009. DOI

Joubert J.M. Crystal chemistry and Calphad modeling of the sigma phase. Prog. Mater. Sci. 2008;53:528–583. doi: 10.1016/j.pmatsci.2007.04.001. DOI

Liu Z.K. First-Principles Calculations and CALPHAD Modeling of Thermodynamics. J. Phase Equilibria Diffus. 2009;30:517–534. doi: 10.1007/s11669-009-9570-6. DOI

Cacciamani G., Dinsdale A., Palumbo M., Pasturel A. The Fe-Ni system: Thermodynamic modelling assisted by atomistic calculations. Intermetallics. 2010;18:1148–1162. doi: 10.1016/j.intermet.2010.02.026. DOI

Schmetterer C., Khvan A., Jacob A., Hallstedt B., Markus T. A New Theoretical Study of the Cr-Nb System. J. Phase Equilibria Diffus. 2014;35:434–444. doi: 10.1007/s11669-014-0313-y. DOI

Jacob A., Schmetterer C., Singheiser L., Gray-Weale A., Hallstedt B., Watson A. Modeling of Fe-W phase diagram using first principles and phonons calculations. CALPHAD-Comput. Coupling Phase Diagrams Thermochem. 2015;50:92–104. doi: 10.1016/j.calphad.2015.04.010. DOI

Bigdeli S., Ehtehsami H., Chen Q., Mao H., Korzhavy P., Selleby M. New description of metastable hcp phase for unaries Fe and Mn: Coupling between first-principles calculations and CALPHAD modeling. Phys. Status Solidi Basic Solid State Phys. 2016;253:1830–1836. doi: 10.1002/pssb.201600096. DOI

Wang W., Chen H.L., Larsson H., Mao H. Thermodynamic constitution of the Al–Cu–Ni system modeled by CALPHAD and ab initio methodology for designing high entropy alloys. Calphad. 2019;65:346–369. doi: 10.1016/j.calphad.2019.03.011. DOI

Leitner J., Sedmidubský D. Thermodynamic Equilibria in Systems with Nanoparticles. In: Šesták J., Hubík P., Mareš J.J., editors. Thermal Physics and Thermal Analysis: From Macro to Micro, Highlighting Thermodynamics, Kinetics and Nanomaterials. Springer International Publishing; Cham, Switzerlands: 2017. pp. 385–402. Hot Topics in Thermal Analysis and Calorimetry. DOI

Hucht A., Sahoo S., Sil S., Entel P. Effect of anisotropy on small magnetic clusters. Phys. Rev. B. 2011;84:104438. doi: 10.1103/PhysRevB.84.104438. DOI

Kaptay G. The Gibbs Equation versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-Materials. J. Nanosci. Nanotechnol. 2012;12:2625–2633. doi: 10.1166/jnn.2012.5774. PubMed DOI

Molleman B., Hiemstra T. Size and Shape Dependency of the Surface Energy of Metallic Nanoparticles: Unifying the Atomic and Thermodynamic Approaches. Phys. Chem. Chem. Phys. 2018;20:20575–20587. doi: 10.1039/C8CP02346H. PubMed DOI

Lee J., Tanaka T., Lee J., Mori H. Effect of Substrates on the Melting Temperature of Gold Nanoparticles. Calphad Comput. Coupling Phase Diagrams Thermochem. 2007;31:105–111. doi: 10.1016/j.calphad.2006.10.001. DOI

Sopoušek J., Vřešťál J., Zemanová A., Buršík J. Phase Diagram Prediction and Particle Characterization of Sn-Ag Nano Alloy for Low Melting Point Lead-Free Solders. J. Min. Metall. Sect. B Metall. 2012;48:419–425. doi: 10.2298/JMMB120121032S. DOI

Yang X., Lu T., Kim T. Effective Thermal Conductivity Modelling for Closed-Cell Porous Media with Analytical Shape Factors. Transp. Porous. Med. 2013;100:211–244. doi: 10.1007/s11242-013-0212-4. DOI

Tyuterev V., Vast N. Murnaghan’s Equation of State for the Electronic Ground State Energy. Comput. Mater. Sci. 2006;38:350–353. doi: 10.1016/j.commatsci.2005.08.012. DOI

Murnaghan F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA. 1944;30:244–247. doi: 10.1073/pnas.30.9.244. PubMed DOI PMC

Timoshenko S., Goodier J.N., editors. Theory of Elasticity. McGraw-Hill; New York, NY, USA: 1951.

Kresse G., Hafner J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Hjorth Larsen A., Jørgen Mortensen J., Blomqvist J., Castelli I.E., Christensen R., Dułak M., Friis J., Groves M.N., Hammer B., Hargus C., et al. The Atomic Simulation Environment—A Python Library for Working with Atoms. Volume 29. IOP Publishing; Bristol, UK: 2017. PubMed DOI

Guisbiers G., Abudukelimu G. Influence of Nanomorphology on the Melting and Catalytic Properties of Convex Polyhedral Nanoparticles. J. Nanoparticle Res. 2013;15:1431. doi: 10.1007/s11051-013-1431-x. DOI

He L.B., Zhang L., Tan X.D., Tang L.P., Xu T., Zhou Y.L., Ren Z.Y., Wang Y., Teng C.Y., Sun L.T., et al. Surface Energy and Surface Stability of Ag Nanocrystals at Elevated Temperatures and Their Dominance in Sublimation-Induced Shape Evolution. Small. 2017;13:1700743. doi: 10.1002/smll.201700743. PubMed DOI

Vitos L., Ruban A.V., Skriver H.L., Kollár J. The Surface Energy of Metals. Surf. Sci. 1998;411:186–202. doi: 10.1016/S0039-6028(98)00363-X. DOI

Properties: Silver—Applications and Properties of Silver. [(accessed on 12 April 2020)]; Available online: https://www.azom.com/properties.aspx?ArticleID=600.

Holec D., Dumitraschkewitz P., Vollath D., Fischer F.D. Surface Energy of Au Nanoparticles Depending on Their Size and Shape. Nanomaterials. 2020;10:484. doi: 10.3390/nano10030484. PubMed DOI PMC

Vollath D., Fischer F.D., Holec D. Surface Energy of Nanoparticles—Influence of Particle Size and Structure. Beilstein J. Nanotechnol. 2018;9:2265–2276. doi: 10.3762/bjnano.9.211. PubMed DOI PMC

Holec D., Fischer F.D., Vollath D. Structure and surface energy of Au55 nanoparticles: An ab initio study. Comput. Mater. Sci. 2017;134:137–144. doi: 10.1016/j.commatsci.2017.03.038. DOI

Momma K., Izumi F. An integrated three-dimensional visualization system VESTA using wxWidgets. Comm. Crystallogr. Comput. Iucr Newslett. 2006;7:106. doi: 10.1103/PhysRevB.88.174103. DOI

Momma K., Izumi F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008;41:653–658. doi: 10.1107/S0021889808012016. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...