Magnetron-sputtered Polytetrafluoroethylene-stabilized Silver Nanoisland Surface for Surface-Enhanced Fluorescence

. 2020 Apr 16 ; 10 (4) : . [epub] 20200416

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32316367

Grantová podpora
18-10897S Grantová Agentura České Republiky
UNCE/SCI/010 Univerzita Karlova v Praze

Surface-enhanced fluorescence (SEF) requires the absorption/emission band of the fluorophore, the localized surface plasmon resonance (LSPR) of the nanostructure and the excitation wavelength to fall in the same (or very close) spectral range. In this paper, we monitor the SEF intensity and lifetime dependence of riboflavin (vitamin B2) adsorbed on a spacer-modified Ag substrate with respect to the thickness of the spacer. The substrates were formed by silver nanoislands deposited onto magnetron-sputtered polytetrafluoroethylene (ms-PTFE). The spacer was formed by the ms-PTFE layer with the thickness ranging from ~5 to 25 nm. The riboflavin dissolved in dimethylsulfoxide (DMSO) at a 10 µM concentration forms, at the ms-PTFE surface, a homogeneous layer of adsorbed molecules corresponding to a monomolecular layer. The microspectroscopic measurements of the adsorbed layer were performed through a sessile droplet; our study has shown the advantages and limitations of this approach. Time-resolved fluorescence enabled us to determine the enhanced fluorescence quantum yield due to the shortening of the radiative decay in the vicinity of the plasmonic surface. For the 5 nm ms-PTFE layer possessing the largest (estimated 4×) fluorescence enhancement, the quantum yield was increased 2.3×.

Zobrazit více v PubMed

Lakowicz J.R. Principles of Fluorescence Spectroscopy. Springer; Singapore: 2006.

Procházka M. Surface-Enhanced Raman Spectroscopy: Bioanalytical, Biomolecular and Medical Applications. Springer; Heidelberg, Switzerland: 2016.

Aroca R.F. Plasmon enhanced spectroscopy. Phys. Chem. Chem. Phys. 2013;15:5355–5363. doi: 10.1039/c3cp44103b. PubMed DOI

Le Ru E.C., Etchegoin P.G. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier; Amsterdam, The Netherlands: 2009.

Li J.F., Li C.Y., Aroca R.F. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 2017;46:3962–3979. doi: 10.1039/C7CS00169J. PubMed DOI

Wokaun A., Lutz H.P., King A.P., Wild U.P., Ernst R.R. Energy-Transfer in Surface Enhanced Luminescence. J. Chem. Phys. 1983;79:509–514. doi: 10.1063/1.445550. DOI

Weitz D.A., Garoff S. The Enhancement of Raman-Scattering, Resonance Raman-Scattering, and Fluorescence from Molecules Adsorbed on a Rough Silver Surface. J. Chem. Phys. 1983;78:5324–5338. doi: 10.1063/1.445486. DOI

Lakowicz J.R. Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 2001;298:1–24. doi: 10.1006/abio.2001.5377. PubMed DOI PMC

Lakowicz J.R., Geddes C.D., Gryczynski I., Malicka J., Gryczynski Z., Aslan K., Lukomska J., Matveeva E., Zhang J., Badugu R., et al. Advances in surface-enhanced fluorescence. J. Fluoresc. 2004;14:425–441. doi: 10.1023/B:JOFL.0000031824.48401.5c. PubMed DOI PMC

Fort E., Gresillon S. Surface enhanced fluorescence. J. Phys. D Appl. Phys. 2008;41:013001. doi: 10.1088/0022-3727/41/1/013001. DOI

Tam F., Goodrich G.P., Johnson B.R., Halas N.J. Plasmonic enhancement of molecular fluorescence. Nano. Lett. 2007;7:496–501. doi: 10.1021/nl062901x. PubMed DOI

Chen Y., Munechika K., Ginger D.S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano. Lett. 2007;7:690–696. doi: 10.1021/nl062795z. PubMed DOI

Stranik O., Nooney R., McDonagh C., MacCraith B.D. Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics. 2007;2:15–22. doi: 10.1007/s11468-006-9020-9. DOI

Bharadwaj P., Novotny L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express. 2007;15:14266–14274. doi: 10.1364/OE.15.014266. PubMed DOI

Sun G., Khurgin J.B. Origin of giant difference between fluorescence, resonance, and nonresonance Raman scattering enhancement by surface plasmons. Phys. Rev. A. 2012;85:063410. doi: 10.1103/PhysRevA.85.063410. DOI

Mishra H., Buddha L.M., Karolin J., Dragan A.I., Geddes C.D. Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system. Phys. Chem. Chem. Phys. 2013;15:19538–19544. doi: 10.1039/c3cp50633a. PubMed DOI

Hanuš J., Libenská H., Khalakhan I., Kuzminova A., Kylián O., Biederman H. Localized surface plasmon resonance tuning via nanostructured gradient Ag surfaces. Mater. Lett. 2017;192:119–122. doi: 10.1016/j.matlet.2016.12.044. DOI

Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI

Liaw J.W., Tsai H.Y., Huang C.H. Size-Dependent Surface Enhanced Fluorescence of Gold Nanorod: Enhancement or Quenching. Plasmonics. 2012;7:543–553. doi: 10.1007/s11468-012-9341-9. DOI

Vahl A., Strobel J., Reichstein W., Polonskyi O., Strunskus T., Kienle L., Faupel F. Single target sputter deposition of alloy nanoparticles with adjustable composition via a gas aggregation cluster source. Nanotechnology. 2017;28:175703. doi: 10.1088/1361-6528/aa66ef. PubMed DOI

Asselin J., Legros P., Gregoire A., Boudreau D. Correlating Metal-Enhanced Fluorescence and Structural Properties in Ag@SiO2 Core-Shell Nanoparticles. Plasmonics. 2016;11:1369–1376. doi: 10.1007/s11468-016-0186-5. DOI

Ferreira M., Constantino C.J., Olivati C.A., Vega M.L., Balogh D.T., Aroca R.F., Faria R.M., Oliveira O.N. Langmuir and Langmuir-Blodgett films of poly[2-methoxy-5-(n-hexyloxy)-p-phenylenevinylene] Langmuir. 2003;19:8835–8842. doi: 10.1021/la0346595. DOI

Constantino C.J.L., Aroca R.F., Mendonça C.R., Mello S.V., Balogh D.T., Oliveira O.N., Jr. Surface enhanced fluorescence and Raman imaging of Langmuir-Blodgett azopolymer films. Spectroc. Acta A Molec. Biomolec. Spectr. 2001;57:281–289. doi: 10.1016/S1386-1425(00)00373-5. PubMed DOI

Bardhan R., Grady N.K., Cole J.R., Joshi A., Halas N.J. Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods. ACS Nano. 2009;3:744–752. doi: 10.1021/nn900001q. PubMed DOI

Dragan A.I., Bishop E.S., Casas-Finet J.R., Strouse R.J., McGivney J., Schenerman M.A., Geddes C.D. Distance Dependence of Metal-Enhanced Fluorescence. Plasmonics. 2012;7:739–744. doi: 10.1007/s11468-012-9366-0. DOI

Zhang J., Fu Y., Chowdhury H., Lakowicz J.R. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Lett. 2007;7:2101–2107. doi: 10.1021/nl071084d. PubMed DOI PMC

Iliut M., Gabudean A.M., Leordean C., Simon T., Teodorescu C.M., Astilean S. Riboflavin enhanced fluorescence of highly reduced graphene oxide. Chem. Phys. Lett. 2013;586:127–131. doi: 10.1016/j.cplett.2013.09.032. DOI

Šubr M., Petr M., Kylián O., Kratochvíl J., Procházka M. Large-scale Ag nanoislands stabilized by a magnetron-sputtered polytetrafluoroethylene film as substrates for highly sensitive and reproducible surface-enhanced Raman scattering (SERS) J. Mat. Chem. C. 2015;3:11478–11485. doi: 10.1039/C5TC02919H. DOI

Praus P., Sureau F. Spectral decomposition of intracellular complex fluorescent signals using multiwavelength phase modulation lifetime determination. J. Fluoresc. 2000;10:361–364. doi: 10.1023/A:1009426429458. DOI

Praus P., Kocisova E., Seksek O., Sureau F., Stepanek J., Turpin P.Y. Advanced microfluorescence methods in monitoring intracellular uptake of "antisense" oligonucleotides. Curr. Org. Chem. 2007;11:515–527. doi: 10.2174/138527207780368210. DOI

Kočišová E., Praus P., Rosenberg I., Seksek O., Sureau F., Štĕpánek J., Turpin P.Y. Intracellular uptake of modified oligonucleotide studied by two fluorescence techniques. Biopolymers. 2004;74:110–114. doi: 10.1002/bip.20055. PubMed DOI

Kočišová E., Praus P., Bok J., Bonneau S., Sureau F. Intracellular Monitoring of AS1411 Aptamer by Time-Resolved Microspectrofluorimetry and Fluorescence Imaging. J. Fluoresc. 2015;25:1245–1250. doi: 10.1007/s10895-015-1612-3. PubMed DOI

Drossler P., Holzer W., Penzkofer A., Hegemann P. Fluorescence quenching of riboflavin in aqueous solution by methionin and cystein. Chem. Phys. 2003;286:409–420. doi: 10.1016/S0301-0104(02)00969-2. DOI

Zirak P., Penzkofer A., Mathes T., Hegemann P. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents. Chem. Phys. 2009;358:111–122. doi: 10.1016/j.chemphys.2008.12.026. DOI

Waldeck D.H., Alivisatos A.P., Harris C.B. Nonradiative Damping of Molecular Electronic Excited-States by Metal-Surfaces. Surf. Sci. 1985;158:103–125. doi: 10.1016/0039-6028(85)90290-0. DOI

Masel R. Principles of Adsorption and Reaction on Solid Surfaces. Wiley; Hoboken, NJ, USA: 1996. p. 240.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...