Magnetron-sputtered Polytetrafluoroethylene-stabilized Silver Nanoisland Surface for Surface-Enhanced Fluorescence
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-10897S
Grantová Agentura České Republiky
UNCE/SCI/010
Univerzita Karlova v Praze
PubMed
32316367
PubMed Central
PMC7221687
DOI
10.3390/nano10040773
PII: nano10040773
Knihovny.cz E-zdroje
- Klíčová slova
- enhancement factor, lifetime, riboflavin, surface-enhanced fluorescence (SEF), time-resolved,
- Publikační typ
- časopisecké články MeSH
Surface-enhanced fluorescence (SEF) requires the absorption/emission band of the fluorophore, the localized surface plasmon resonance (LSPR) of the nanostructure and the excitation wavelength to fall in the same (or very close) spectral range. In this paper, we monitor the SEF intensity and lifetime dependence of riboflavin (vitamin B2) adsorbed on a spacer-modified Ag substrate with respect to the thickness of the spacer. The substrates were formed by silver nanoislands deposited onto magnetron-sputtered polytetrafluoroethylene (ms-PTFE). The spacer was formed by the ms-PTFE layer with the thickness ranging from ~5 to 25 nm. The riboflavin dissolved in dimethylsulfoxide (DMSO) at a 10 µM concentration forms, at the ms-PTFE surface, a homogeneous layer of adsorbed molecules corresponding to a monomolecular layer. The microspectroscopic measurements of the adsorbed layer were performed through a sessile droplet; our study has shown the advantages and limitations of this approach. Time-resolved fluorescence enabled us to determine the enhanced fluorescence quantum yield due to the shortening of the radiative decay in the vicinity of the plasmonic surface. For the 5 nm ms-PTFE layer possessing the largest (estimated 4×) fluorescence enhancement, the quantum yield was increased 2.3×.
Zobrazit více v PubMed
Lakowicz J.R. Principles of Fluorescence Spectroscopy. Springer; Singapore: 2006.
Procházka M. Surface-Enhanced Raman Spectroscopy: Bioanalytical, Biomolecular and Medical Applications. Springer; Heidelberg, Switzerland: 2016.
Aroca R.F. Plasmon enhanced spectroscopy. Phys. Chem. Chem. Phys. 2013;15:5355–5363. doi: 10.1039/c3cp44103b. PubMed DOI
Le Ru E.C., Etchegoin P.G. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier; Amsterdam, The Netherlands: 2009.
Li J.F., Li C.Y., Aroca R.F. Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 2017;46:3962–3979. doi: 10.1039/C7CS00169J. PubMed DOI
Wokaun A., Lutz H.P., King A.P., Wild U.P., Ernst R.R. Energy-Transfer in Surface Enhanced Luminescence. J. Chem. Phys. 1983;79:509–514. doi: 10.1063/1.445550. DOI
Weitz D.A., Garoff S. The Enhancement of Raman-Scattering, Resonance Raman-Scattering, and Fluorescence from Molecules Adsorbed on a Rough Silver Surface. J. Chem. Phys. 1983;78:5324–5338. doi: 10.1063/1.445486. DOI
Lakowicz J.R. Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 2001;298:1–24. doi: 10.1006/abio.2001.5377. PubMed DOI PMC
Lakowicz J.R., Geddes C.D., Gryczynski I., Malicka J., Gryczynski Z., Aslan K., Lukomska J., Matveeva E., Zhang J., Badugu R., et al. Advances in surface-enhanced fluorescence. J. Fluoresc. 2004;14:425–441. doi: 10.1023/B:JOFL.0000031824.48401.5c. PubMed DOI PMC
Fort E., Gresillon S. Surface enhanced fluorescence. J. Phys. D Appl. Phys. 2008;41:013001. doi: 10.1088/0022-3727/41/1/013001. DOI
Tam F., Goodrich G.P., Johnson B.R., Halas N.J. Plasmonic enhancement of molecular fluorescence. Nano. Lett. 2007;7:496–501. doi: 10.1021/nl062901x. PubMed DOI
Chen Y., Munechika K., Ginger D.S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano. Lett. 2007;7:690–696. doi: 10.1021/nl062795z. PubMed DOI
Stranik O., Nooney R., McDonagh C., MacCraith B.D. Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics. 2007;2:15–22. doi: 10.1007/s11468-006-9020-9. DOI
Bharadwaj P., Novotny L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express. 2007;15:14266–14274. doi: 10.1364/OE.15.014266. PubMed DOI
Sun G., Khurgin J.B. Origin of giant difference between fluorescence, resonance, and nonresonance Raman scattering enhancement by surface plasmons. Phys. Rev. A. 2012;85:063410. doi: 10.1103/PhysRevA.85.063410. DOI
Mishra H., Buddha L.M., Karolin J., Dragan A.I., Geddes C.D. Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system. Phys. Chem. Chem. Phys. 2013;15:19538–19544. doi: 10.1039/c3cp50633a. PubMed DOI
Hanuš J., Libenská H., Khalakhan I., Kuzminova A., Kylián O., Biederman H. Localized surface plasmon resonance tuning via nanostructured gradient Ag surfaces. Mater. Lett. 2017;192:119–122. doi: 10.1016/j.matlet.2016.12.044. DOI
Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI
Liaw J.W., Tsai H.Y., Huang C.H. Size-Dependent Surface Enhanced Fluorescence of Gold Nanorod: Enhancement or Quenching. Plasmonics. 2012;7:543–553. doi: 10.1007/s11468-012-9341-9. DOI
Vahl A., Strobel J., Reichstein W., Polonskyi O., Strunskus T., Kienle L., Faupel F. Single target sputter deposition of alloy nanoparticles with adjustable composition via a gas aggregation cluster source. Nanotechnology. 2017;28:175703. doi: 10.1088/1361-6528/aa66ef. PubMed DOI
Asselin J., Legros P., Gregoire A., Boudreau D. Correlating Metal-Enhanced Fluorescence and Structural Properties in Ag@SiO2 Core-Shell Nanoparticles. Plasmonics. 2016;11:1369–1376. doi: 10.1007/s11468-016-0186-5. DOI
Ferreira M., Constantino C.J., Olivati C.A., Vega M.L., Balogh D.T., Aroca R.F., Faria R.M., Oliveira O.N. Langmuir and Langmuir-Blodgett films of poly[2-methoxy-5-(n-hexyloxy)-p-phenylenevinylene] Langmuir. 2003;19:8835–8842. doi: 10.1021/la0346595. DOI
Constantino C.J.L., Aroca R.F., Mendonça C.R., Mello S.V., Balogh D.T., Oliveira O.N., Jr. Surface enhanced fluorescence and Raman imaging of Langmuir-Blodgett azopolymer films. Spectroc. Acta A Molec. Biomolec. Spectr. 2001;57:281–289. doi: 10.1016/S1386-1425(00)00373-5. PubMed DOI
Bardhan R., Grady N.K., Cole J.R., Joshi A., Halas N.J. Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods. ACS Nano. 2009;3:744–752. doi: 10.1021/nn900001q. PubMed DOI
Dragan A.I., Bishop E.S., Casas-Finet J.R., Strouse R.J., McGivney J., Schenerman M.A., Geddes C.D. Distance Dependence of Metal-Enhanced Fluorescence. Plasmonics. 2012;7:739–744. doi: 10.1007/s11468-012-9366-0. DOI
Zhang J., Fu Y., Chowdhury H., Lakowicz J.R. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles. Nano Lett. 2007;7:2101–2107. doi: 10.1021/nl071084d. PubMed DOI PMC
Iliut M., Gabudean A.M., Leordean C., Simon T., Teodorescu C.M., Astilean S. Riboflavin enhanced fluorescence of highly reduced graphene oxide. Chem. Phys. Lett. 2013;586:127–131. doi: 10.1016/j.cplett.2013.09.032. DOI
Šubr M., Petr M., Kylián O., Kratochvíl J., Procházka M. Large-scale Ag nanoislands stabilized by a magnetron-sputtered polytetrafluoroethylene film as substrates for highly sensitive and reproducible surface-enhanced Raman scattering (SERS) J. Mat. Chem. C. 2015;3:11478–11485. doi: 10.1039/C5TC02919H. DOI
Praus P., Sureau F. Spectral decomposition of intracellular complex fluorescent signals using multiwavelength phase modulation lifetime determination. J. Fluoresc. 2000;10:361–364. doi: 10.1023/A:1009426429458. DOI
Praus P., Kocisova E., Seksek O., Sureau F., Stepanek J., Turpin P.Y. Advanced microfluorescence methods in monitoring intracellular uptake of "antisense" oligonucleotides. Curr. Org. Chem. 2007;11:515–527. doi: 10.2174/138527207780368210. DOI
Kočišová E., Praus P., Rosenberg I., Seksek O., Sureau F., Štĕpánek J., Turpin P.Y. Intracellular uptake of modified oligonucleotide studied by two fluorescence techniques. Biopolymers. 2004;74:110–114. doi: 10.1002/bip.20055. PubMed DOI
Kočišová E., Praus P., Bok J., Bonneau S., Sureau F. Intracellular Monitoring of AS1411 Aptamer by Time-Resolved Microspectrofluorimetry and Fluorescence Imaging. J. Fluoresc. 2015;25:1245–1250. doi: 10.1007/s10895-015-1612-3. PubMed DOI
Drossler P., Holzer W., Penzkofer A., Hegemann P. Fluorescence quenching of riboflavin in aqueous solution by methionin and cystein. Chem. Phys. 2003;286:409–420. doi: 10.1016/S0301-0104(02)00969-2. DOI
Zirak P., Penzkofer A., Mathes T., Hegemann P. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents. Chem. Phys. 2009;358:111–122. doi: 10.1016/j.chemphys.2008.12.026. DOI
Waldeck D.H., Alivisatos A.P., Harris C.B. Nonradiative Damping of Molecular Electronic Excited-States by Metal-Surfaces. Surf. Sci. 1985;158:103–125. doi: 10.1016/0039-6028(85)90290-0. DOI
Masel R. Principles of Adsorption and Reaction on Solid Surfaces. Wiley; Hoboken, NJ, USA: 1996. p. 240.