Organic Salts of Pharmaceutical Impurity p-Aminophenol
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
12/RC/2275
Science Foundation Ireland - Ireland
17-23196S
Grantová Agentura České Republiky
PubMed
32326160
PubMed Central
PMC7221883
DOI
10.3390/molecules25081910
PII: molecules25081910
Knihovny.cz E-zdroje
- Klíčová slova
- 4-aminophenol or p-aminophenol, impurity removal, paracetamol, particle size, salt,
- MeSH
- aminofenoly chemie MeSH
- kontaminace léku * MeSH
- krystalografie rentgenová MeSH
- léčivé přípravky analýza chemie normy MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- organické látky chemie MeSH
- prášky, zásypy, pudry MeSH
- soli chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4-aminophenol MeSH Prohlížeč
- aminofenoly MeSH
- léčivé přípravky MeSH
- organické látky MeSH
- prášky, zásypy, pudry MeSH
- soli MeSH
The presence of impurities can drastically affect the efficacy and safety of pharmaceutical entities. p-Aminophenol (PAP) is one of the main impurities of paracetamol (PA) that can potentially show toxic effects such as maternal toxicity and nephrotoxicity. The removal of PAP from PA is challenging and difficult to achieve through regular crystallization approaches. In this regard, we report four new salts of PAP with salicylic acid (SA), oxalic acid (OX), l-tartaric acid (TA), and (1S)-(+)-10-camphorsulfonic acid (CSA). All the PAP salts were analyzed using single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The presence of minute amounts of PAP in paracetamol solids gives a dark color to the product that was difficult to remove through crystallization. In our study, we found that the addition of small quantities of the aforementioned acids helps to remove PAP from PA during the filtration and washings. This shows that salt formation could be used to efficiently remove challenging impurities.
Institute of Physics ASCR Na Slovance 2 182 21 Praha 8 Czech Republic
Zobrazit více v PubMed
Cok I., Emerce E. Overview of impurities in pharmaceuticals: Toxicological aspects. Asian Chem. Lett. 2012;16:87–97.
Roy J. Pharmaceutical impurities—A mini-review. AAPS PharmSciTech. 2002;3:1–8. doi: 10.1208/pt030206. PubMed DOI PMC
International Conferences on Harmonization, Draft Revised Guidance on Impurities in New Drug Substances. Q3A(R) Fed. Regist. 2000;65:45085–45090.
Jacobson-Kram D., McGovern T. Toxicological overview of impurities in pharmaceutical products. Adv. Drug Deliv. Rev. 2007;59:38–42. doi: 10.1016/j.addr.2006.10.007. PubMed DOI
Pan C., Liu F., Motto M. Identification of Pharmaceutical Impurities in Formulated Dosage forms. J. Pharm. Sci. 2011;100:1228–1259. doi: 10.1002/jps.22376. PubMed DOI
Kuturu S., Nangia A. Lornoxicam Salts: Crystal Structures, Conformations, and Solubility. Cryst. Growth Des. 2014;14:2945–2953.
Aitipamula S., Wong A.B.H., Chow P.S., Tan R.B.H. Novel solid forms of oxaprozin: Cocrystals and an extended release drug–drug salt of salbutamol. RSC Adv. 2016;6:34110–34119. doi: 10.1039/C6RA01802E. DOI
Li Y., Bentzley C.M., Tarloffa J.B. Comparison of para-aminophenol cyto toxicity in rat renal epithelial cells and hepatocytes. Toxicology. 2004;209:69–76. doi: 10.1016/j.tox.2004.12.008. PubMed DOI
Fu X., Chen T.S., Ray M.B., Nagasawa H.T., Williams W.M. p-Aminophenol-induced hepatotoxicity in hamsters: Role of glutathione. J. Biochem. Mol. Toxicol. 2004;18:154–161. doi: 10.1002/jbt.20021. PubMed DOI
Bomhard E.M., Herbold B.A. Genotoxic activities of aniline and its metabolites and their relationship to the carcinogenicity of aniline in the spleen of rats. Crit. Revs. Toxicol. 2005;35:783–835. doi: 10.1080/10408440500442384. PubMed DOI
Song H., Chen T.S. P-Aminophenol-induced liver toxicity: Tentative evidence of a role for acetaminophen. J. Biochem. Mol. Toxicol. 2001;15:34–40. doi: 10.1002/1099-0461(2001)15:1<34::AID-JBT4>3.0.CO;2-U. PubMed DOI
Newton J.F., Kuo C.H., Gemborys M.W., Mudge G.H., Hook J.B. Nephrotoxicity of p-aminophenol, a metabolite of acetaminophen, in the Fischer 344 rat. Toxicol. Appl. Pharmacol. 1982;65:336–344. doi: 10.1016/0041-008X(82)90017-5. PubMed DOI
Burnett C.M., Re T.A., Rodriguez S., Loehr R.F., Dressler W.E. The toxicity of p-Aminophenol in the Sprague-Dawley rat: Effects on growth, reproduction and foetal development. Food Chem. Toxicol. 1989;27:691–698. doi: 10.1016/0278-6915(89)90124-5. PubMed DOI
Pradeep N.V., Anupama S., Navya K., Shalini H.N., Idris M., Hampannavar U.S. Biological removal of phenol from wastewaters: A mini review. Appl. Water Sci. 2015;5:105–112. doi: 10.1007/s13201-014-0176-8. DOI
Sun M., Yao R., You Y., Deng S., Gao W. Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst. Front. Environ. Sci. Eng. China. 2007;1:95–98. doi: 10.1007/s11783-007-0018-0. DOI
Erhan E., Keskinler B., Akay G., Algur O.F. Removal of phenol from water by membrane-immobilized enzymes. Part I. Dead-end filtration. J. Membr. Sci. 2002;206:361–373. doi: 10.1016/S0376-7388(01)00779-7. DOI
Snodin D.J., McCrossen S.D. Guidelines and pharmacopoeial standards for pharmaceutical impurities: Overview and critical assessment. Regul. Toxicol. Pharmacol. 2012;63:298–312. doi: 10.1016/j.yrtph.2012.03.016. PubMed DOI
Khandavilli U.B.R., Gangavaram S., Rajesh Goud N., Cherukuvada S., Raghavender S., Nangia A., Manjunatha S.G., Nambiar S., Pal S. High solubility crystalline hydrates of Na and K furosemide salts. CrystEngComm. 2014;16:4842–4852. doi: 10.1039/C3CE42347F. DOI
Khandavilli U.B.R., Bhogala B.R., Maguire A.R., Lawrence S.E. Symmetry assisted tuning of bending and brittle multi-component forms of probenecid. Chem. Commun. 2017;53:3881–3884. doi: 10.1039/C7CC01091E. PubMed DOI
Khandavilli U.B.R., Skořepová E., Sinha A.S., Bhogala B.R., Maguire N.M., Maguire A.R., Lawrence S.E. Cocrystals and a Salt of the Bioactive Flavonoid: Naringenin. Cryst. Growth Des. 2018;18:4571–4577. doi: 10.1021/acs.cgd.8b00557. DOI
Suresh K., Khandavilli U.B.R., Gunnam A., Nangia A. Polymorphism, isostructurality and physicochemical properties of glibenclamide salts. CrystEngComm. 2017;19:918–929. doi: 10.1039/C6CE02295B. DOI
Serajuddin A.T.M. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 2007;59:603–616. doi: 10.1016/j.addr.2007.05.010. PubMed DOI
Aitipamula S., Wong A.B.H., Chow P.S., Tan R.B.H. Pharmaceutical salts of haloperidol with some carboxylic acids and artificial sweeteners: Hydrate formation, polymorphism, and physicochemical properties. Cryst. Growth Des. 2014;14:2542–2556. doi: 10.1021/cg500245e. DOI
Cherukuvada S., Nangia A. Salts and Ionic Liquid of The Antituberculosis Drug S,S-Ethambutol. Cryst. Growth Des. 2013;13:152–1760. doi: 10.1021/cg400071d. DOI
Paluch K.J., McCabe T., Müller-Bunz H., Corrigan O.I., Healy A.M., Tajber L. Formation and physicochemical properties of crystalline and amorphous salts with different stoichiometries formed between ciprofloxacin and succinic acid. Mol. Pharm. 2013;10:3640–3654. doi: 10.1021/mp400127r. PubMed DOI
His H.K., Chadwik K., Fried A., Kenny M., Myerson A.S. Separation of impurities from solution by selective co-crystal formation. CrystEngComm. 2012;14:2386–2388.
Billot P., Hosek P., Perin M.-A. Efficient Purification of an Active Pharmaceutical Ingredient via Cocrystallization: From Thermodynamics to Scale-Up Org. Process Res. Dev. 2013;17:505–511. doi: 10.1021/op300214p. DOI
Bhogala B.R., Basavoju S., Nangia A. Tape and layer structures in cocrystals of some di and tricarboxylic acids with 4,4-bipyridines and isonicotinamide. From binary to ternary cocrystals. CrystEngComm. 2005;7:551–562. doi: 10.1039/b509162d. DOI
Khandavilli U.B.R., Yousuf M., Schaller B.E., Steendam R.R.E., Keshavarz L., McArdle P., Frawley P.J. Plastically bendable pregabalin multi-component systems with improved tabletability and compressibility. CrystEngComm. 2020;22:412–415. doi: 10.1039/C9CE01625B. DOI
Wyszecka-Kaszuba E., Warowna-Grześkiewicz M., Fijałek Z. Determination of 4-aminophenol impurities in multicomponent analgesic preparations by HPLC with amperometric detection. J. Pharm. Biomed. Anal. 2003;32:1081–1086. doi: 10.1016/S0731-7085(03)00212-7. PubMed DOI
He Z., Song S., Ying H., Xu L., Chen J. p-Aminophenol degradation by ozonation combined with sonolysis: Operating conditions influence and mechanism. Ultrason. Sonochem. 2007;14:568–574. doi: 10.1016/j.ultsonch.2006.10.002. PubMed DOI