Organic Salts of Pharmaceutical Impurity p-Aminophenol

. 2020 Apr 21 ; 25 (8) : . [epub] 20200421

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32326160

Grantová podpora
12/RC/2275 Science Foundation Ireland - Ireland
17-23196S Grantová Agentura České Republiky

The presence of impurities can drastically affect the efficacy and safety of pharmaceutical entities. p-Aminophenol (PAP) is one of the main impurities of paracetamol (PA) that can potentially show toxic effects such as maternal toxicity and nephrotoxicity. The removal of PAP from PA is challenging and difficult to achieve through regular crystallization approaches. In this regard, we report four new salts of PAP with salicylic acid (SA), oxalic acid (OX), l-tartaric acid (TA), and (1S)-(+)-10-camphorsulfonic acid (CSA). All the PAP salts were analyzed using single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. The presence of minute amounts of PAP in paracetamol solids gives a dark color to the product that was difficult to remove through crystallization. In our study, we found that the addition of small quantities of the aforementioned acids helps to remove PAP from PA during the filtration and washings. This shows that salt formation could be used to efficiently remove challenging impurities.

Zobrazit více v PubMed

Cok I., Emerce E. Overview of impurities in pharmaceuticals: Toxicological aspects. Asian Chem. Lett. 2012;16:87–97.

Roy J. Pharmaceutical impurities—A mini-review. AAPS PharmSciTech. 2002;3:1–8. doi: 10.1208/pt030206. PubMed DOI PMC

International Conferences on Harmonization, Draft Revised Guidance on Impurities in New Drug Substances. Q3A(R) Fed. Regist. 2000;65:45085–45090.

Jacobson-Kram D., McGovern T. Toxicological overview of impurities in pharmaceutical products. Adv. Drug Deliv. Rev. 2007;59:38–42. doi: 10.1016/j.addr.2006.10.007. PubMed DOI

Pan C., Liu F., Motto M. Identification of Pharmaceutical Impurities in Formulated Dosage forms. J. Pharm. Sci. 2011;100:1228–1259. doi: 10.1002/jps.22376. PubMed DOI

Kuturu S., Nangia A. Lornoxicam Salts: Crystal Structures, Conformations, and Solubility. Cryst. Growth Des. 2014;14:2945–2953.

Aitipamula S., Wong A.B.H., Chow P.S., Tan R.B.H. Novel solid forms of oxaprozin: Cocrystals and an extended release drug–drug salt of salbutamol. RSC Adv. 2016;6:34110–34119. doi: 10.1039/C6RA01802E. DOI

Li Y., Bentzley C.M., Tarloffa J.B. Comparison of para-aminophenol cyto toxicity in rat renal epithelial cells and hepatocytes. Toxicology. 2004;209:69–76. doi: 10.1016/j.tox.2004.12.008. PubMed DOI

Fu X., Chen T.S., Ray M.B., Nagasawa H.T., Williams W.M. p-Aminophenol-induced hepatotoxicity in hamsters: Role of glutathione. J. Biochem. Mol. Toxicol. 2004;18:154–161. doi: 10.1002/jbt.20021. PubMed DOI

Bomhard E.M., Herbold B.A. Genotoxic activities of aniline and its metabolites and their relationship to the carcinogenicity of aniline in the spleen of rats. Crit. Revs. Toxicol. 2005;35:783–835. doi: 10.1080/10408440500442384. PubMed DOI

Song H., Chen T.S. P-Aminophenol-induced liver toxicity: Tentative evidence of a role for acetaminophen. J. Biochem. Mol. Toxicol. 2001;15:34–40. doi: 10.1002/1099-0461(2001)15:1<34::AID-JBT4>3.0.CO;2-U. PubMed DOI

Newton J.F., Kuo C.H., Gemborys M.W., Mudge G.H., Hook J.B. Nephrotoxicity of p-aminophenol, a metabolite of acetaminophen, in the Fischer 344 rat. Toxicol. Appl. Pharmacol. 1982;65:336–344. doi: 10.1016/0041-008X(82)90017-5. PubMed DOI

Burnett C.M., Re T.A., Rodriguez S., Loehr R.F., Dressler W.E. The toxicity of p-Aminophenol in the Sprague-Dawley rat: Effects on growth, reproduction and foetal development. Food Chem. Toxicol. 1989;27:691–698. doi: 10.1016/0278-6915(89)90124-5. PubMed DOI

Pradeep N.V., Anupama S., Navya K., Shalini H.N., Idris M., Hampannavar U.S. Biological removal of phenol from wastewaters: A mini review. Appl. Water Sci. 2015;5:105–112. doi: 10.1007/s13201-014-0176-8. DOI

Sun M., Yao R., You Y., Deng S., Gao W. Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst. Front. Environ. Sci. Eng. China. 2007;1:95–98. doi: 10.1007/s11783-007-0018-0. DOI

Erhan E., Keskinler B., Akay G., Algur O.F. Removal of phenol from water by membrane-immobilized enzymes. Part I. Dead-end filtration. J. Membr. Sci. 2002;206:361–373. doi: 10.1016/S0376-7388(01)00779-7. DOI

Snodin D.J., McCrossen S.D. Guidelines and pharmacopoeial standards for pharmaceutical impurities: Overview and critical assessment. Regul. Toxicol. Pharmacol. 2012;63:298–312. doi: 10.1016/j.yrtph.2012.03.016. PubMed DOI

Khandavilli U.B.R., Gangavaram S., Rajesh Goud N., Cherukuvada S., Raghavender S., Nangia A., Manjunatha S.G., Nambiar S., Pal S. High solubility crystalline hydrates of Na and K furosemide salts. CrystEngComm. 2014;16:4842–4852. doi: 10.1039/C3CE42347F. DOI

Khandavilli U.B.R., Bhogala B.R., Maguire A.R., Lawrence S.E. Symmetry assisted tuning of bending and brittle multi-component forms of probenecid. Chem. Commun. 2017;53:3881–3884. doi: 10.1039/C7CC01091E. PubMed DOI

Khandavilli U.B.R., Skořepová E., Sinha A.S., Bhogala B.R., Maguire N.M., Maguire A.R., Lawrence S.E. Cocrystals and a Salt of the Bioactive Flavonoid: Naringenin. Cryst. Growth Des. 2018;18:4571–4577. doi: 10.1021/acs.cgd.8b00557. DOI

Suresh K., Khandavilli U.B.R., Gunnam A., Nangia A. Polymorphism, isostructurality and physicochemical properties of glibenclamide salts. CrystEngComm. 2017;19:918–929. doi: 10.1039/C6CE02295B. DOI

Serajuddin A.T.M. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 2007;59:603–616. doi: 10.1016/j.addr.2007.05.010. PubMed DOI

Aitipamula S., Wong A.B.H., Chow P.S., Tan R.B.H. Pharmaceutical salts of haloperidol with some carboxylic acids and artificial sweeteners: Hydrate formation, polymorphism, and physicochemical properties. Cryst. Growth Des. 2014;14:2542–2556. doi: 10.1021/cg500245e. DOI

Cherukuvada S., Nangia A. Salts and Ionic Liquid of The Antituberculosis Drug S,S-Ethambutol. Cryst. Growth Des. 2013;13:152–1760. doi: 10.1021/cg400071d. DOI

Paluch K.J., McCabe T., Müller-Bunz H., Corrigan O.I., Healy A.M., Tajber L. Formation and physicochemical properties of crystalline and amorphous salts with different stoichiometries formed between ciprofloxacin and succinic acid. Mol. Pharm. 2013;10:3640–3654. doi: 10.1021/mp400127r. PubMed DOI

His H.K., Chadwik K., Fried A., Kenny M., Myerson A.S. Separation of impurities from solution by selective co-crystal formation. CrystEngComm. 2012;14:2386–2388.

Billot P., Hosek P., Perin M.-A. Efficient Purification of an Active Pharmaceutical Ingredient via Cocrystallization: From Thermodynamics to Scale-Up Org. Process Res. Dev. 2013;17:505–511. doi: 10.1021/op300214p. DOI

Bhogala B.R., Basavoju S., Nangia A. Tape and layer structures in cocrystals of some di and tricarboxylic acids with 4,4-bipyridines and isonicotinamide. From binary to ternary cocrystals. CrystEngComm. 2005;7:551–562. doi: 10.1039/b509162d. DOI

Khandavilli U.B.R., Yousuf M., Schaller B.E., Steendam R.R.E., Keshavarz L., McArdle P., Frawley P.J. Plastically bendable pregabalin multi-component systems with improved tabletability and compressibility. CrystEngComm. 2020;22:412–415. doi: 10.1039/C9CE01625B. DOI

Wyszecka-Kaszuba E., Warowna-Grześkiewicz M., Fijałek Z. Determination of 4-aminophenol impurities in multicomponent analgesic preparations by HPLC with amperometric detection. J. Pharm. Biomed. Anal. 2003;32:1081–1086. doi: 10.1016/S0731-7085(03)00212-7. PubMed DOI

He Z., Song S., Ying H., Xu L., Chen J. p-Aminophenol degradation by ozonation combined with sonolysis: Operating conditions influence and mechanism. Ultrason. Sonochem. 2007;14:568–574. doi: 10.1016/j.ultsonch.2006.10.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...