Natural Compounds Rosmarinic Acid and Carvacrol Counteract Aluminium-Induced Oxidative Stress

. 2020 Apr 15 ; 25 (8) : . [epub] 20200415

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32326410

Aluminum accumulation, glutathione (GSH) and malondialdehyde (MDA) concentrations as well as catalase (CAT) and superoxide dismutase (SOD) activities were determined in erythrocytes and brain and liver homogenates of BALB/c mice treated with Al3+ (7.5 mg/kg/day (0.15 LD50) as AlCl3 (37.08 mg/kg/day), whereas HCl (30.41 mg/kg/day) was used as Cl- control, the treatments were performed for 21 days, i.p., in the presence and absence of rosmarinic acid (0.2805 mg/kg/day (0.05 LD50), 21 days, i.g.) or carvacrol (0.0405 mg/kg/day (0.05 LD50), 21 days, i.g.). The treatment with AlCl3 increased GSH concentration in erythrocytes only slightly and had no effect on brain and liver homogenates. Rosmarinic acid and carvacrol strongly increased GSH concentration in erythrocytes but decreased it in brain and liver homogenates. However, AlCl3 treatment led to Al accumulation in mice blood, brain, and liver and induced oxidative stress, assessed based on MDA concentration in the brain and liver. Both rosmarinic acid and carvacrol were able to counteract the negative Al effect by decreasing its accumulation and protecting tissues from lipid peroxidation. AlCl3 treatment increased CAT activity in mice brain and liver homogenates, whereas the administration of either rosmarinic acid or carvacrol alone or in combination with AlCl3 had no significant effect on CAT activity. SOD activity remained unchanged after all the treatments in our study. We propose that natural herbal phenolic compounds rosmarinic acid and carvacrol could be used to protect brain and liver against aluminum induced oxidative stress leading to lipid peroxidation.

Zobrazit více v PubMed

Willhite C.C., Karyakina N.A., Yokel R.A., Yenugadhati N., Wisniewski T.M., Arnold I.M., Momoli F., Krewski D. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit. Rev. Toxicol. 2014;44:1–80. doi: 10.3109/10408444.2014.934439. PubMed DOI PMC

Arabsolghar R., Saberzadeh J., Khodaei F., Borojeni R.A., Khorsand M., Rashedinia M. The protective effect of sodium benzoate on aluminum toxicity in PC12 cell line. Res. Pharm Sci. 2017;12:391–400. PubMed PMC

Fraga C.G., Oteiza P.I., Golub M.S., Gershwin M.E., Keen C.L. Effects of aluminum on brain lipid peroxidation. Toxicol. Lett. 1990;51:213–219. doi: 10.1016/0378-4274(90)90212-5. PubMed DOI

Gutteridge J.M., Quinlan G.J., Clark I., Halliwell B. Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim. Biophys. Acta. 1985;835:441–447. doi: 10.1016/0005-2760(85)90113-4. PubMed DOI

Savory J., Rao J.K., Huang Y., Letada P.R., Herman M.M. Age-related hippocampal changes in Bcl-2: Bax ratio, oxidative stress, redox-active iron and apoptosis associated with aluminum-induced neurodegeneration: Increased susceptibility with aging. Neurotoxicology. 1999;20:805–817. PubMed

Tomljenovic L. Aluminum and Alzheimer′s disease: After a century of controversy, is there a plausible link? J. Alzheimers Dis. 2011;23:567–598. doi: 10.3233/JAD-2010-101494. PubMed DOI

Zatta P., Lain E., Cagnolini C. Effects of aluminum on activity of krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. Eur. J. Biochem. 2000;267:3049–3055. doi: 10.1046/j.1432-1033.2000.01328.x. PubMed DOI

Shelley R., Kim N.S., Parsons P., Lee B.K., Jaar B., Fadrowski J., Agnew J., Matanoski G.M., Schwartz B.S., Steuerwald A., et al. Associations of multiple metals with kidney outcomes in lead workers. Occup. Environ. Med. 2012;69:727–735. doi: 10.1136/oemed-2012-100765. PubMed DOI PMC

Garrosa M., Llanes F., Gayoso M.J. Histopathological changes in gerbil liver and kidney after aluminum subchronic intoxication. Histol. Histopathol. 2011;26:883–892. PubMed

Bhadauria M. Combined treatment of HEDTA and propolis prevents aluminum induced toxicity in rats. Food Chem. Toxicol. 2012;50:2487–2495. doi: 10.1016/j.fct.2011.12.040. PubMed DOI

Turgut S., Bor-Kucukatay M., Emmungil G., Atsak P., Turgut G. The effects of low dose aluminum on hemorheological and hematological parameters in rats. Arch. Toxicol. 2007;81:11–17. doi: 10.1007/s00204-006-0119-8. PubMed DOI

Viezeliene D., Jansen E., Rodovicius H., Kasauskas A., Ivanov L. Protective effect of selenium on aluminium-induced oxidative stress in mouse liver in vivo. Environ. Toxicol. Pharmacol. 2011;31:302–306. doi: 10.1016/j.etap.2010.11.008. PubMed DOI

Banks W.A., Niehoff M.L., Drago D., Zatta P. Aluminum complexing enhances amyloid beta protein penetration of blood–brain barrier. Brain Res. 2006;1116:215–221. doi: 10.1016/j.brainres.2006.07.112. PubMed DOI

Kumar V., Bal A., Gill K.D. Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium. Brain Res. 2008;1232:94–103. doi: 10.1016/j.brainres.2008.07.028. PubMed DOI

Altschuler E. Aluminum-containing antacids as a cause of idiopathic Parkinson′s disease. Med. Hypotheses. 1999;53:22–23. doi: 10.1054/mehy.1997.0701. PubMed DOI

Walton J.R. Cognitive deterioration and associated pathology induced by chronic low-level aluminum ingestion in a translational rat model provides an explanation of Alzheimer′s disease, tests for susceptibility and avenues for treatment. Int. J. Alzheimers Dis. 2012;2012:914–947. doi: 10.1155/2012/914947. PubMed DOI PMC

Yokel R.A. The toxicology of aluminum in the brain: A review. Neurotoxicology. 2000;21:813–828. PubMed

Bigford G.E., Del Rossi G. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv. Nutr. 2014;5:394–403. doi: 10.3945/an.113.005264. PubMed DOI PMC

Joseph J., Cole G., Head E., Ingram D. Nutrition, brain aging, and neurodegeneration. J. Neurosci. 2009;29:12795–12801. doi: 10.1523/JNEUROSCI.3520-09.2009. PubMed DOI PMC

Hashimoto M., Hossain S. Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: Beneficial effect of docosahexaenoic acid on cognitive decline in Alzheimer′s disease. J. Pharmacol. Sci. 2011;116:150–162. doi: 10.1254/jphs.10R33FM. PubMed DOI

Jones L.L., McDonald D.A., Borum P.R. Acylcarnitines: Role in brain. Prog. Lipid Res. 2010;49:61–75. doi: 10.1016/j.plipres.2009.08.004. PubMed DOI

Malaguarnera M. Carnitine derivatives: Clinical usefulness. Curr. Opin. Gastroenterol. 2012;28:166–176. doi: 10.1097/MOG.0b013e3283505a3b. PubMed DOI

Petersen M., Simmonds M.S. Rosmarinic acid. Phytochemistry. 2003;62:121–125. doi: 10.1016/S0031-9422(02)00513-7. PubMed DOI

Zhou H., Fu B., Xu B., Mi X., Li G., Ma C., Xie J., Li J., Wang Z. Rosmarinic Acid Alleviates the Endothelial Dysfunction Induced by Hydrogen Peroxide in Rat Aortic Rings via Activation of AMPK. Oxid. Med. Cell. Longev. 2017;2017:7091904. doi: 10.1155/2017/7091904. PubMed DOI PMC

Lee H.J., Cho H.S., Park E., Kim S., Lee S.Y., Kim C.S., Kim D.K., Kim S.J., Chun H.S. Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis. Toxicology. 2008;250:109–115. doi: 10.1016/j.tox.2008.06.010. PubMed DOI

Choi H.R., Choi J.S., Han Y.N., Bae S.J., Chung H.Y. Peroxynitrite scavenging activity of herb extracts. Phytother. Res. 2002;16:364–367. doi: 10.1002/ptr.904. PubMed DOI

Qiao S., Li W., Tsubouchi R., Haneda M., Murakami K., Takeuchi F., Nisimoto Y., Yoshino M. Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radic. Res. 2005;39:995–1003. doi: 10.1080/10715760500231836. PubMed DOI

Luan H., Kan Z., Xu Y., Lv C., Jiang W. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: Relation to inflammation response. J. Neuroinflammation. 2013;10:28. doi: 10.1186/1742-2094-10-28. PubMed DOI PMC

Friedman M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J. Agric. Food Chem. 2014;62:7652–7670. doi: 10.1021/jf5023862. PubMed DOI

Soobrattee M.A., Neergheen V.S., Luximon-Ramma A., Aruoma O.I., Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 2005;579:200–213. doi: 10.1016/j.mrfmmm.2005.03.023. PubMed DOI

Baser K.H. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008;14:3106–3119. doi: 10.2174/138161208786404227. PubMed DOI

Nostro A., Papalia T. Antimicrobial activity of carvacrol: Current progress and future prospectives. Recent Pat. Antiinfect. Drug Discov. 2012;7:28–35. doi: 10.2174/157489112799829684. PubMed DOI

Suntres Z.E., Coccimiglio J., Alipour M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 2015;55:304–318. doi: 10.1080/10408398.2011.653458. PubMed DOI

Maya S., Prakash T., Madhu K.D., Goli D. Multifaceted effects of aluminium in neurodegenerative diseases: A review. Biomed. Pharmacother. 2016;83:746–754. doi: 10.1016/j.biopha.2016.07.035. PubMed DOI

Shoji H., Irino Y., Yoshida M., Miyakawa T. Behavioral effects of long-term oral administration of aluminum ammonium sulfate in male and female C57BL/6J mice. Neuropsychopharmacol. Rep. 2018;38:18–36. doi: 10.1002/npr2.12002. PubMed DOI PMC

Martinez C.S., Vera G., Ocio J.A.U., Pecanha F.M., Vassallo D.V., Miguel M., Wiggers G.A. Aluminum exposure for 60days at an equivalent human dietary level promotes peripheral dysfunction in rats. J. Inorg. Biochem. 2018;181:169–176. doi: 10.1016/j.jinorgbio.2017.08.011. PubMed DOI

Birben E., Sahiner U.M., Sackesen C., Erzurum S., Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012;5:9–19. doi: 10.1097/WOX.0b013e3182439613. PubMed DOI PMC

Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sanchez-Perez P., Cadenas S., Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–197. doi: 10.1016/j.redox.2015.07.008. PubMed DOI PMC

Dickinson D.A., Forman H.J. Glutathione in defense and signaling: Lessons from a small thiol. Ann. N Y Acad. Sci. 2002;973:488–504. doi: 10.1111/j.1749-6632.2002.tb04690.x. PubMed DOI

Siu G.M., Draper H.H. Metabolism of malonaldehyde in vivo and in vitro. Lipids. 1982;17:349–355. doi: 10.1007/BF02535193. PubMed DOI

Girotti A.W. Mechanisms of lipid peroxidation. J. Free Radic. Biol. Med. 1985;1:87–95. doi: 10.1016/0748-5514(85)90011-X. PubMed DOI

Del Rio D., Stewart A.J., Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005;15:316–328. doi: 10.1016/j.numecd.2005.05.003. PubMed DOI

Abdel-Salam O.M.E., Hamdy S.M., Seadawy S.A.M., Galal A.F., Abouelfadl D.M., Atrees S.S. Effect of piracetam, vincamine, vinpocetine, and donepezil on oxidative stress and neurodegeneration induced by aluminum chloride in rats. Comp. Clin. Pathol. 2016;25:305–318. doi: 10.1007/s00580-015-2182-0. DOI

Al-Amin M.M., Reza H.M., Saadi H.M., Mahmud W., Ibrahim A.A., Alam M.M., Kabir N., Saifullah A.R., Tropa S.T., Quddus A.H. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice. Eur. J. Pharmacol. 2016;777:60–69. doi: 10.1016/j.ejphar.2016.02.062. PubMed DOI

Hussain S., Slikker W., Jr., Ali S.F. Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain. Int. J. Dev. Neurosci. 1995;13:811–817. doi: 10.1016/0736-5748(95)00071-2. PubMed DOI

Li L., Jiao Y., Jin T., Sun H., Li S., Jin C., Hu S., Ji J., Xiang L. Phenolic alkaloid oleracein E attenuates oxidative stress and neurotoxicity in AlCl3-treated mice. Life Sci. 2017;191:211–218. doi: 10.1016/j.lfs.2017.10.019. PubMed DOI

Gonzalez-Vallinas M., Reglero G., Ramirez de Molina A. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy. Nutr. Cancer. 2015;67:1221–1229. doi: 10.1080/01635581.2015.1082110. PubMed DOI

Duthie S.J., Collins A.R. The influence of cell growth, detoxifying enzymes and DNA repair on hydrogen peroxide-mediated DNA damage (measured using the comet assay) in human cells. Free Radic. Biol. Med. 1997;22:717–724. doi: 10.1016/S0891-5849(96)00421-2. PubMed DOI

Galati G., Sabzevari O., Wilson J.X., O′Brien P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology. 2002;177:91–104. doi: 10.1016/S0300-483X(02)00198-1. PubMed DOI

Ferguson L.R. Role of plant polyphenols in genomic stability. Mutat. Res. 2001;475:89–111. doi: 10.1016/S0027-5107(01)00073-2. PubMed DOI

Kumar V., Gill K.D. Aluminium neurotoxicity: Neurobehavioral and oxidative aspects. Arch. Toxicol. 2009;83:965–978. doi: 10.1007/s00204-009-0455-6. PubMed DOI

Krewski D., Yokel R.A., Nieboer E., Borchelt D., Cohen J., Harry J., Kacew S., Lindsay J., Mahfouz A.M., Rondeau V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health B Crit. Rev. 2007;10:1–269. doi: 10.1080/10937400701597766. PubMed DOI PMC

Yang Y., Wang H., Guo Y., Lei W., Wang J., Hu X., Yang J., He Q. Metal Ion Imbalance-Related Oxidative Stress Is Involved in the Mechanisms of Liver Injury in a Rat Model of Chronic Aluminum Exposure. Biol. Trace Elem. Res. 2016;173:126–131. doi: 10.1007/s12011-016-0627-1. PubMed DOI

Crisponi G., Fanni D., Gerosa C., Nemolato S., Nurchi V.M., Crespo-Alonso M., Lachowicz J.I., Faa G. The meaning of aluminium exposure on human health and aluminium-related diseases. Biomol. Concepts. 2013;4:77–87. doi: 10.1515/bmc-2012-0045. PubMed DOI

Geyikoglu F., Turkez H., Bakir T.O., Cicek M. The genotoxic, hepatotoxic, nephrotoxic, haematotoxic and histopathological effects in rats after aluminium chronic intoxication. Toxicol. Ind. Health. 2013;29:780–791. doi: 10.1177/0748233712440140. PubMed DOI

Hasanein P., Sharifi M. Effects of rosmarinic acid on acetaminophen-induced hepatotoxicity in male Wistar rats. Pharm. Biol. 2017;55:1809–1816. doi: 10.1080/13880209.2017.1331248. PubMed DOI PMC

Lee A.Y., Hwang B.R., Lee M.H., Lee S., Cho E.J. Perilla frutescens var. japonica and rosmarinic acid improve amyloid-beta25-35 induced impairment of cognition and memory function. Nutr. Res. Pract. 2016;10:274–281. doi: 10.4162/nrp.2016.10.3.274. PubMed DOI PMC

Zhang Y., Chen X., Yang L., Zu Y., Lu Q. Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food Funct. 2015;6:927–931. doi: 10.1039/C4FO01051E. PubMed DOI

Aeschbach R., Loliger J., Scott B.C., Murcia A., Butler J., Halliwell B., Aruoma O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 1994;32:31–36. doi: 10.1016/0278-6915(84)90033-4. PubMed DOI

Teissedre P.L., Waterhouse A.L. Inhibition of oxidation of human low-density lipoproteins by phenolic substances in different essential oils varieties. J. Agric. Food Chem. 2000;48:3801–3805. doi: 10.1021/jf990921x. PubMed DOI

Yu W., Liu Q., Zhu S. Carvacrol protects against acute myocardial infarction of rats via anti-oxidative and anti-apoptotic pathways. Biol. Pharm. Bull. 2013;36:579–584. doi: 10.1248/bpb.b12-00948. PubMed DOI

Chen Y., Ba L., Huang W., Liu Y., Pan H., Mingyao E., Shi P., Wang Y., Li S., Qi H., et al. Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur. J. Pharmacol. 2017;796:90–100. doi: 10.1016/j.ejphar.2016.11.053. PubMed DOI

Singh T., Goel R.K. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity. Neurotoxicology. 2015;49:1–7. doi: 10.1016/j.neuro.2015.04.007. PubMed DOI

Jangra A., Kasbe P., Pandey S.N., Dwivedi S., Gurjar S.S., Kwatra M., Mishra M., Venu A.K., Sulakhiya K., Gogoi R., et al. Hesperidin and Silibinin Ameliorate Aluminum-Induced Neurotoxicity: Modulation of Antioxidants and Inflammatory Cytokines Level in Mice Hippocampus. Biol. Trace Elem. Res. 2015;168:462–471. doi: 10.1007/s12011-015-0375-7. PubMed DOI

Bacanli M., Aydin S., Taner G., Goktas H.G., Sahin T., Basaran A.A., Basaran N. Does rosmarinic acid treatment have protective role against sepsis-induced oxidative damage in Wistar Albino rats? Hum. Exp. Toxicol. 2016;35:877–886. doi: 10.1177/0960327115607971. PubMed DOI

Sedlak J., Lindsay R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman′s reagent. Anal. Biochem. 1968;25:192–205. doi: 10.1016/0003-2697(68)90092-4. PubMed DOI

Moron M.S., Depierre J.W., Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta. 1979;582:67–78. doi: 10.1016/0304-4165(79)90289-7. PubMed DOI

Seliutina C.N., Seliutin A., Pal A.I. Modification of estimation the concentrations of serum TBA-active product. Klin. Lab. Diagn. 2000:8–10. PubMed

Mihara M., Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978;86:271–278. PubMed

Vermelho A.B., Couri S. Methods to Determine Enzymatic Activity. Bentham Science Publishers; Sharjah, U.A.E.: 2013. p. 334.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...