• This record comes from PubMed

Physicochemical and Mechanical Performance of Freestanding Boron-Doped Diamond Nanosheets Coated with C:H:N:O Plasma Polymer

. 2020 Apr 15 ; 13 (8) : . [epub] 20200415

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
347324/12/NCBR/2017 Narodowe Centrum Badań i Rozwoju

The physicochemical and mechanical properties of thin and freestanding heavy boron-doped diamond (BDD) nanosheets coated with a thin C:H:N:O plasma polymer were studied. First, diamond nanosheets were grown and doped with boron on a Ta substrate using the microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Next, the BDD/Ta samples were covered with nylon 6.6 to improve their stability in harsh environments and flexibility during elastic deformations. Plasma polymer films with a thickness of the 500-1000 nm were obtained by magnetron sputtering of a bulk target of nylon 6.6. Hydrophilic nitrogen-rich C:H:N:O was prepared by the sputtering of nylon 6.6. C:H:N:O as a film with high surface energy improves adhesion in ambient conditions. The nylon-diamond interface was perfectly formed, and hence, the adhesion behavior could be attributed to the dissipation of viscoelastic energy originating from irreversible energy loss in soft polymer structure. Diamond surface heterogeneities have been shown to pin the contact edge, indicating that the retraction process causes instantaneous fluctuations on the surface in specified microscale regions. The observed Raman bands at 390, 275, and 220 cm-1 were weak; therefore, the obtained films exhibited a low level of nylon 6 polymerization and short-distance arrangement, indicating crystal symmetry and interchain interactions. The mechanical properties of the nylon-on-diamond were determined by a nanoindentation test in multiload mode. Increasing the maximum load during the nanoindentation test resulted in a decreased hardness of the fabricated structure. The integration of freestanding diamond nanosheets will make it possible to design flexible chemical multielectrode sensors.

See more in PubMed

Behler K.D., Stravato A., Mochalin V., Korneva G., Yushin G., Gogotsi Y. Nanodiamond-polymer composite fibers and coatings. ACS Nano. 2009;3:363–369. doi: 10.1021/nn800445z. PubMed DOI

Boland J.N., Li X.S. Microstructural characterisation and wear behaviour of diamond composite materials. Materials. 2010;3:1390–1419. doi: 10.3390/ma3021390. DOI

Tsubone D., Hasebe T., Kamijo A., Hotta A. Fracture mechanics of diamond-like carbon (DLC) films coated on flexible polymer substrates. Surf. Coat. Technol. 2007;201:6423–6430. doi: 10.1016/j.surfcoat.2006.12.008. DOI

Kalsoom U., Peristyy A., Nesterenko P.N., Paull B. A 3D printable diamond polymer composite: A novel material for fabrication of low cost thermally conducting devices. Rsc Adv. 2016;6:38140–38147. doi: 10.1039/C6RA05261D. DOI

Klonos P., Pandis C., Kripotou S., Kyritsis A., Pissis P. Interfacial effects in polymer nanocomposites studied by dielectric and thermal techniques. IEEE Trans. Dielectr. Electr. Insul. 2012;19:1283–1290. doi: 10.1109/TDEI.2012.6260002. DOI

Samuel Reich E. Phosphorene excites materials scientists. Nature. 2014;506:19. doi: 10.1038/506019a. PubMed DOI

Houssa M., Scalise E., Sankaran K., Pourtois G., Afanas’ev V.V., Stesmans A. Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 2011;98:223107. doi: 10.1063/1.3595682. DOI

Tao L., Cinquanta E., Chiappe D., Grazianetti C., Fanciulli M., Dubey M., Molle A., Akinwande D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015;10:227–231. doi: 10.1038/nnano.2014.325. PubMed DOI

Castro E.V., Novoselov K.S., Morozov S.V., Peres N.M.R., dos Santos J.M.B.L., Nilsson J., Guinea F., Geim A.K., Neto A.H.C. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007;99:216802. doi: 10.1103/PhysRevLett.99.216802. PubMed DOI

Pierpaoli M., Lewkowicz A., Rycewicz M., Szczodrowski K., Ruello M.L., Bogdanowicz R. Enhanced photocatalytic activity of transparent carbon nanowall/TiO2 heterostructures. Mater. Lett. 2020;262:127155. doi: 10.1016/j.matlet.2019.127155. DOI

Ferrari A.C., Robertson J., Ferrari A.C., Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004;362:2477–2512. doi: 10.1098/rsta.2004.1452. PubMed DOI

Xu S., Wang Z.L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011;4:1013–1098. doi: 10.1007/s12274-011-0160-7. DOI

Yao S., Zhu Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv. Mater. 2015;27:1480–1511. doi: 10.1002/adma.201404446. PubMed DOI

Böhm C.F., Feldner P., Merle B., Wolf S.E. Conical nanoindentation allows azimuthally independent hardness determination in geological and biogenic minerals. Materials. 2019;12:1630. doi: 10.3390/ma12101630. PubMed DOI PMC

Kosowska M., Majchrowicz D., Sankaran K.J., Ficek M., Haenen K., Szczerska M. Doped nanocrystalline diamond films as reflective layers for fiber-optic sensors of refractive index of liquids. Materials. 2019;12:2124. doi: 10.3390/ma12132124. PubMed DOI PMC

Booth L., Catledge S.A., Nolen D., Thompson R.G., Vohra Y.K. Synthesis and characterization of multilayered diamond coatings for biomedical implants. Materials. 2011;4:857–868. doi: 10.3390/ma4050857. PubMed DOI PMC

Kalish R. The search for donors in diamond. Diam. Relat. Mater. 2001;10:1749–1755. doi: 10.1016/S0925-9635(01)00426-5. DOI

Wort C.J.H., Balmer R.S. Diamond as an electronic material. Mater. Today. 2008;11:22–28. doi: 10.1016/S1369-7021(07)70349-8. DOI

Nunn N., Torelli M., McGuire G., Shenderova O. Nanodiamond: A high impact nanomaterial. Curr. Opin. Solid State Mater. Sci. 2017;21:1–9. doi: 10.1016/j.cossms.2016.06.008. DOI

Yang G.-W., Wang J.-B., Liu Q.-X. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter. 1998;10:7923–7927. doi: 10.1088/0953-8984/10/35/024. DOI

Welz S., Gogotsi Y., McNallan M.J. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 2003;93:4207–4214. doi: 10.1063/1.1558227. DOI

Butler J.E., Sumant A.V. The CVD of nanodiamond materials. Chem. Vap. Depos. 2008;14:145–160. doi: 10.1002/cvde.200700037. DOI

Tranchida D., Piccarolo S., Loos J., Alexeev A. Mechanical characterization of polymers on a nanometer scale through nanoindentation. A study on pile-up and viscoelasticity. Macromolecules. 2007;40:1259–1267. doi: 10.1021/ma062140k. DOI

Lan P., Zhang Y., Dai W., Polycarpou A.A. A phenomenological elevated temperature friction model for viscoelastic polymer coatings based on nanoindentation. Tribol. Int. 2018;119:299–307. doi: 10.1016/j.triboint.2017.11.009. DOI

Owen A.J., Ward I.M. Mechanical anisotropy in nylon 6 and nylon 6.6. J. Macromol. Sci. Part B. 1973;7:279–296. doi: 10.1080/00222347308212587. DOI

Lim L.-T., Britt I.J., Tung M.A. Sorption and transport of water vapor in nylon 6,6 film. J. Appl. Polym. Sci. 1999;71:197–206. doi: 10.1002/(SICI)1097-4628(19990110)71:2<197::AID-APP2>3.0.CO;2-J. DOI

Lin H., Jin T., Lv L., Ai Q. Indentation size effect in pressure-sensitive polymer based on a criterion for description of yield differential effects and shear transformation-mediated plasticity. Polymers. 2019;11:412. doi: 10.3390/polym11030412. PubMed DOI PMC

Hookway D.C. The cold-drawing of nylon 6.6. J. Text. Inst. Proc. 1958;49:P292–P316. doi: 10.1080/19447015808688398. DOI

Steenackers M., Lud S.Q., Niedermeier M., Bruno P., Gruen D.M., Feulner P., Stutzmann M., Garrido J.A., Jordan R. Structured polymer grafts on diamond. J. Am. Chem. Soc. 2007;129:15655–15661. doi: 10.1021/ja075378c. PubMed DOI

Jee A.-Y., Lee M. Mechanical properties of polycarbonate and poly(methyl methacrylate) films reinforced with surface-functionalized nanodiamonds. J. Nanosci. Nanotechnol. 2011;11:533–536. doi: 10.1166/jnn.2011.3290. PubMed DOI

Choi E.-Y., Kim K., Kim C.-K., Kang E. Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion. Sci. Rep. 2016;6:37010. doi: 10.1038/srep37010. PubMed DOI PMC

Yasuda H., Iriyama Y. 21—Plasma polymerization. In: Allen G., Bevington J.C., editors. Comprehensive Polymer Science and Supplements. Volume 4. Pergamon; Amsterdam, The Netherlands: 1989. pp. 357–375.

Kylián O., Shelemin A., Solař P., Pleskunov P., Nikitin D., Kuzminova A., Štefaníková R., Kúš P., Cieslar M., Hanuš J., et al. Magnetron sputtering of polymeric targets: From thin films to heterogeneous metal/plasma polymer nanoparticles. Materials. 2019;12:2366. doi: 10.3390/ma12152366. PubMed DOI PMC

Drábik M., Polonskyi O., Kylián O., Čechvala J., Artemenko A., Gordeev I., Choukourov A., Slavínská D., Matolínová I., Biederman H. Super-hydrophobic coatings prepared by RF magnetron sputtering of PTFE. Plasma Process. Polym. 2010;7:544–551. doi: 10.1002/ppap.200900164. DOI

Kholodkov I., Biederman H., Slavínská D., Choukourov A., Trchova M. Plasma polymers prepared by RF sputtering of polyethylene. Vacuum. 2003;70:505–509. doi: 10.1016/S0042-207X(02)00702-9. DOI

Kratochvíl J., Kahoun D., Štěrba J., Langhansová H., Lieskovská J., Fojtíková P., Hanuš J., Kousal J., Kylián O., Straňák V. Plasma polymerized C:H:N:O thin films for controlled release of antibiotic substances. Plasma Process. Polym. 2018;15:1700160. doi: 10.1002/ppap.201700160. DOI

Kratochvíl J., Štěrba J., Lieskovská J., Langhansová H., Kuzminova A., Khalakhan I., Kylián O., Straňák V. Antibacterial effect of Cu/C:F nanocomposites deposited on PEEK substrates. Mater. Lett. 2018;230:96–99. doi: 10.1016/j.matlet.2018.07.082. DOI

Kratochvíl J., Kahoun D., Kylián O., Štěrba J., Kretková T., Kousal J., Hanuš J., Vaclová J., Prysiazhnyi V., Sezemský P., et al. Nitrogen enriched C:H:N:O thin films for improved antibiotics doping. Appl. Surf. Sci. 2019;494:301–308. doi: 10.1016/j.apsusc.2019.07.135. DOI

Tyng L.Y., Ramli M.R., Othman M.B.H., Ramli R., Ishak Z.A.M., Ahmad Z. Effect of crosslink density on the refractive index of a polysiloxane network based on 2,4,6,8-tetramethyl-2,4,6, 8-tetravinylcyclotetrasiloxane. Polym. Int. 2013;62:382–389. doi: 10.1002/pi.4315. DOI

Bogdanowicz R., Fabiańska A., Golunski L., Sobaszek M., Gnyba M., Ryl J., Darowicki K., Ossowski T., Janssens S.D., Haenen K., et al. Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes. Diam. Relat. Mater. 2013;39:82–88. doi: 10.1016/j.diamond.2013.08.004. DOI

Menchaca C., Alvarez-Castillo A., Martinez-Barrera G., Lopez-Valdivia H., Carrasco H., Castano V.M. Mechanisms for the modification of nylon 6,12 by gamma irradiation. Int. J. Mater. Prod. Technol. 2003;19:521–529. doi: 10.1504/IJMPT.2003.003468. DOI

Prysiazhnyi V., Kratochvíl J., Kylián O., Stranak V. Reactive sputtering deposition of plasma polymerized nylon films with embedded NHx groups. Surf. Coat. Technol. 2019;363:120–127. doi: 10.1016/j.surfcoat.2019.02.046. DOI

Fischer-Cripps A.C. IBIS Handbook of Nanoindentation. Fischer-Cripps Laboratories Pty Ltd.; Forestville, Australia: 2009.

Fan B., Zhu Y., Rechenberg R., Rusinek C.A., Becker M.F., Li W. Large-scale, all polycrystalline diamond structures transferred onto flexible Parylene-C films for neurotransmitter sensing. Lab Chip. 2017;17:3159–3167. doi: 10.1039/C7LC00229G. PubMed DOI PMC

Shick R.A., Jayaraman S.K., Goodall B.L., Rhodes L.F., McDougall W.C., Kohl P., Bidstrup-Allen S.A., Chiniwalla P., Chiniwalla P. Avatrel™ dielectric polymers for electronic packaging. Adv. Microelectron. 1998;25:13–14.

Hess A.E., Sabens D.M., Martin H.B., Zorman C.A. Diamond-on-polymer microelectrode arrays fabricated using a chemical release transfer process. J. Microelectromech. Syst. 2011;20:867–875. doi: 10.1109/JMEMS.2011.2159099. DOI

Arantes T.M., Sardinha A., Baldan M.R., Cristovan F.H., Ferreira N.G. Lead detection using micro/nanocrystalline boron-doped diamond by square-wave anodic stripping voltammetry. Talanta. 2014;128:132–140. doi: 10.1016/j.talanta.2014.04.074. PubMed DOI

Pierre M.D.L., Bruno M., Manfredotti C., Nestola F., Prencipe M., Manfredotti C. The (100), (111) and (110) surfaces of diamond: An ab initio B3LYP study. Mol. Phys. 2014;112:1030–1039. doi: 10.1080/00268976.2013.829250. DOI

Piotrowski P.L., Cannara R.J., Gao G., Urban J.J., Carpick R.W., Harrison J.A. Atomistic factors governing adhesion between diamond, amorphous carbon and model diamond nanocomposite surfaces. J. Adhes. Sci. Technol. 2010;24:2471–2498. doi: 10.1163/016942410X508208. DOI

Niedziałkowski P., Ossowski T., Zięba P., Cirocka A., Rochowski P., Pogorzelski S.J., Ryl J., Sobaszek M., Bogdanowicz R. Poly-l-lysine-modified boron-doped diamond electrodes for the amperometric detection of nucleic acid bases. J. Electroanal. Chem. 2015;756:84–93. doi: 10.1016/j.jelechem.2015.08.006. DOI

Ostrovskaya L., Perevertailo V., Ralchenko V., Dementjev A., Loginova O. Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films. Diam. Relat. Mater. 2002;11:845–850. doi: 10.1016/S0925-9635(01)00636-7. DOI

Ichibha T., Hongo K., Motochi I., Makau N.W., Amolo G.O., Maezono R. Adhesion of electrodes on diamond (111) surface: A DFT study. Diam. Relat. Mater. 2018;81:168–175. doi: 10.1016/j.diamond.2017.12.008. DOI

Dalvi S., Gujrati A., Khanal S.R., Pastewka L., Dhinojwala A., Jacobs T.D.B. Linking energy loss in soft adhesion to surface roughness. PNAS. 2019;116:25484–25490. doi: 10.1073/pnas.1913126116. PubMed DOI PMC

Kylián O., Hanuš J., Choukourov A., Kousal J., Slavínská D., Biederman H. Deposition of amino-rich thin films by RF magnetron sputtering of nylon. J. Phys. D Appl. Phys. 2009;42:142001. doi: 10.1088/0022-3727/42/14/142001. DOI

Yamamoto S., Ohnishi E., Sato H., Hoshina H., Ishikawa D., Ozaki Y. Low-frequency vibrational modes of nylon 6 studied by using infrared and raman spectroscopies and density functional theory calculations. J. Phys. Chem. B. 2019;123:5368–5376. doi: 10.1021/acs.jpcb.9b04347. PubMed DOI

Moniruzzaman M., Chattopadhyay J., Billups W.E., Winey K.I. Tuning the mechanical properties of SWNT/Nylon 6,10 composites with flexible spacers at the interface. Nano Lett. 2007;7:1178–1185. doi: 10.1021/nl062868e. PubMed DOI

Liu T., Phang I.Y., Shen L., Chow S.Y., Zhang W.-D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules. 2004;37:7214–7222. doi: 10.1021/ma049132t. DOI

Nix W.D., Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids. 1998;46:411–425. doi: 10.1016/S0022-5096(97)00086-0. DOI

He G., Xu C., Liu C., Liu H., Wang H. Grain size and temperature effects on the indentation induced plastic deformations of nano polycrystalline diamond. Appl. Surf. Sci. 2019;480:349–360. doi: 10.1016/j.apsusc.2019.02.229. DOI

Huang C., Peng X., Yang B., Chen X., Li Q., Yin D., Fu T. Effects of strain rate and annealing temperature on tensile properties of nanocrystalline diamond. Carbon. 2018;136:320–328. doi: 10.1016/j.carbon.2018.04.052. DOI

Durst K., Backes B., Franke O., Göken M. Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 2006;9:2547–2555. doi: 10.1016/j.actamat.2006.01.036. DOI

Han C.-S. Influence of the molecular structure on indentation size effect in polymers. Mater. Sci. Eng. A. 2010;3:619–624. doi: 10.1016/j.msea.2009.08.033. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...