Double layer crystallization of heptahelicene on noble metal surfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
144339
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung - International
Swiss National Science Foundation - Switzerland
PubMed
32343874
DOI
10.1002/chir.23235
Knihovny.cz E-zdroje
- Klíčová slova
- chiral crystallization, heptahelicene, scanning tunneling microscopy, surface science,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Resolution of enantiomers of chiral compounds via crystallization is the dominant method in chemical industry, but chiral recognition at the molecular level during this process is still poorly understood. Using single metal surfaces in ultrahigh vacuum as model system, the enantio-related transition from the monolayer structure into a double layer of the racemic mixture of heptahelicene has been studied with scanning tunneling microscopy. Submolecular resolution reveals enantiopure second layers on Ag(111) and almost enantiopure second layers on Au(111). In analogy to previous results on Cu(111), it is concluded that transition from the 2D first layer racemate into a layered racemate occurs.
Department of Chemistry University of Zurich Zürich Switzerland
Empa Swiss Federal Laboratories for Materials Science and Technology Dübendorf Switzerland
Nanosurf Lab Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Pasteur L. Recherches sur les relations qui peuvent exister entre la forme cristalline: la composition chimique et les sens de la polarisation rotatoire. Ann Phys. 1848;24:442-459.
Wallach O. Zur Kenntniss der Terpene und der ätherischen Oele 34. Justus Liebigs Ann Chem. 1895;286:119-143.
Ernst K-H. On the validity of calling Wallach's rule Wallach's rule. Isr J Chem. 2016;57:24-30.
Brock CP, Schweizer WB, Dunitz JD. On the validity of Wallach's rule: on the density and stability of racemic crystals compared with their chiral counterparts. J Am Chem Soc. 1991;113:9811-9820.
Pérez-Garíca L, Amabilino DB. Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supramolecular polymers and assemblies. Chem Soc Rev. 2007;36(6):941-967.
Pérez-Garíca L, Amabilino DB. Spontaneous resolution under supramolecular control. Chem Soc Rev. 2002;31(6):342-356.
Ernst K-H. Molecular chirality in surface science. Surf Sci. 2013;613:1-5.
Raval R. Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. Chem Soc Rev. 2009;38(3):707-721.
Ernst K-H. Stereochemical recognition of helicenes on metal surfaces. Acc Chem Res. 2016;49(6):1182-1190.
Kiran V, Mathew SP, Cohen SR, Hernández Delgado I, Lacour J, Naaman R. Helicenes-a new class of organic spin filter. Adv Mater. 2016;28(10):1957-1962.
Kettner M, Maslyuk VV, Nürenberg D, et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J Phys Chem Lett. 2018;9(8):2025-2030.
Large converse piezoelectric effect measured on a single molecule on a metallic surface. J Am Chem Soc. 2018;140(3):940-946.
Yang Y, da Costa RC, Fuchter MJ, Campbell AJ. Circularly polarized light detection by a chiralorganic semiconductor transistor. Nat Photonics. 2013;7:634-638.
Seibel J, Zoppi L, Ernst K-H. 2D conglomerate crystallization of heptahelicene. Chem Commun (Camb). 2014;50:8751-8753.
Ascolani H, van der Meijden MW, Cristina LJ, et al. Van der Waals interactions in the self-assembly of 5-amino[6]helicene on Cu(100) and Au(111). Chem Commun (Camb). 2014;50(90):13907-13909.
Fuhr JD, van der Meijden MW, Cristina LJ, et al. Chiral expression of adsorbed (MP) 5-amino[6]helicenes: from random structures to dense racemic crystals by surface alloying. Chem Commun (Camb). 2017;53:130-133.
Seibel J, Parschau M, Ernst K-H. From homochiral clusters to racemate crystals: viable nuclei in 2D chiral crystallization. J Am Chem Soc. 2015;137:7970-7973.
Stöhr M, Boz S, Schär M, et al. Self-assembly and two-dimensional spontaneous resolution of cyano-functionalized [7]helicenes on Cu(111). Angew Chem Int Ed. 2011;50(42):9982-9986.
Mairena A, Mendieta JI, Stetsovych O, et al. Heterochiral recognition among functionalized heptahelicenes on noble metal surfaces. Chem Commun (Camb). 2019;55:10595-10598.
Mairena A, Parschau M, Seibel J, et al. Diastereoselective self-assembly of bisheptahelicene on Cu(111). Chem Commun (Camb). 2018;54:8757-8760.
Mairena A, Wäckerlin C, Wienke M, Grenader K, Terfort A, Ernst K-H. Diastereoselective Ullmann coupling to bishelicenes by surface topochemistry. J Am Chem Soc. 2018;140(45):15186-15189.
Parschau M, Fasel R, Ernst K-H. Coverage and enantiomeric excess dependent enantiomorphism in two-dimensional molecular crystals. Cryst Growth Des. 2008;8:1890-1896.
Seibel J, Parschau M, Ernst K-H. Two-dimensional crystallization of enantiopure and racemic heptahelicene on Ag(111) and Au(111). J Phys Chem C. 2014;118:29135-29141.
Parschau M, Ernst K-H. Disappearing enantiomorphs: single handedness in racemate crystals. Angew Chem Int Ed Engl. 2015;54(48):14422-14426.
Parschau M, Ellerbeck U, Ernst K-H. Chirality transfer by epitaxial mismatch in multi-layered homochiral molecular films. Colloids Surf A Physicochem Eng Asp. 2010;354:240-245.
Mairena A, Zoppi L, Seibel J, et al. Heterochiral to homochiral transition in pentahelicene 2D crystallization induced by second-layer nucleation. ACS Nano. 2017;11(1):865-871.