Metallurgical Preparation of Nb-Al and W-Al Intermetallic Compounds and Characterization of Their Microstructure and Phase Transformations by DTA Technique

. 2020 Apr 24 ; 25 (8) : . [epub] 20200424

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32344652

Grantová podpora
CZ.1.05/2.1.00/19.0387 Ministerstvo Školství, Mládeže a Tělovýchovy
SP2020/56 Ministerstvo Školství, Mládeže a Tělovýchovy

The possibilities of metallurgical preparation of 40Nb-60Al and 15W-85Al intermetallic compounds (in at.%) by plasma arc melting (PAM) and vacuum induction melting (VIM) were studied. Both methods allow easy preparation of Nb-Al alloys; however, significant evaporation of Al was observed during the melting, which affected the resulting chemical composition. The preparation of W-Al alloys was more problematic because there was no complete re-melting of W during PAM and VIM. However, the combination of PAM and VIM allowed the preparation of W-Al alloy without any non-melted parts. The microstructure of Nb-Al alloys consisted of Nb2Al and NbAl3 intermetallic phases, and W-Al alloys consisted mainly of needle-like WAl4 intermetallic phase and Al matrix. The effects of melting conditions on chemical composition, homogeneity, and microstructure were determined. Differential thermal analysis was used to determine melting and phase transformation temperatures of the prepared alloys.

Zobrazit více v PubMed

Hanada S. Encyclopedia of Materials: Science and Technology. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2001. Intermetallics: Niobium aluminides; pp. 4232–4236.

Hanada S. Niobium aluminides. Curr. Opin. Solid State Mater. Sci. 1997;2:279–283. doi: 10.1016/S1359-0286(97)80115-5. DOI

Yan X., Fray D.J. Synthesis of niobium aluminides by electro-deoxidation of oxides. J. Alloy. Compd. 2009;486:154–161. doi: 10.1016/j.jallcom.2009.06.176. DOI

Glowacki B. Niobium aluminide as a source of high-current superconductors. Intermet. 1999;7:117–140. doi: 10.1016/S0966-9795(98)00084-3. DOI

Peng L. Synthesis and mechanical properties of niobium aluminide-based composites. Mater. Sci. Eng. A. 2008;480:232–236. doi: 10.1016/j.msea.2007.07.046. DOI

Sina H., Iyengar S. Studies on the formation of aluminides in heated Nb–Al powder mixtures. J. Alloy. Compd. 2015;628:9–19. doi: 10.1016/j.jallcom.2014.12.151. DOI

Gauthier V., Josse C., Bernard F., Gaffet E., Larpin J. Synthesis of niobium aluminides using mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing process. Mater. Sci. Eng. A. 1999;265:117–128. doi: 10.1016/S0921-5093(98)01141-1. DOI

Loser W., Hermann R., Leonhardt M., Stephan D., Bormann R. Metastable phase transformation in undercooled near-eutectic Nb-Al alloys. Mater. Sci. Eng. A. 1997;224:53–60. doi: 10.1016/S0921-5093(96)10559-1. DOI

Zhang H., Feng P., Akhtar F. Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism. Sci. Rep. 2017;7:12391. doi: 10.1038/s41598-017-12302-w. PubMed DOI PMC

Chen D., Chen Z., Cai J., Chen Z. Preparation of W–Al intermetallic compound powders by a mechanochemical approach. J. Alloy. Compd. 2008;461:L23–L25. doi: 10.1016/j.jallcom.2007.07.058. DOI

Unuvar C., Fredrick D., Anselmi-Tamburini U., Shaw B., Manerbino A., Guigné J., Munir Z. Dissolution and precipitation under gravitational conditions in the W–Al system. Intermetallics. 2007;15:363–370. doi: 10.1016/j.intermet.2006.08.007. DOI

Unuvar C., Fredrick D., Anselmi-Tamburini U., Shaw B., Manerbino A., Guigné J., Munir Z. Gravity effects on reactive settling in the Al–W system in SHS. Intermetallics. 2007;15:294–304. doi: 10.1016/j.intermet.2006.07.001. DOI

Dembovsky V. Plasma Metallurgy: The Principles, SNTL, Praha. Elsevier; Amsterdam, The Netherlands: 1985.

Frkanova K., Lapin J. Relationship between microstructure and cooling rate in air-hardenable TiAl-based alloy; Proceedings of the METAL 2012: International Conference on Metallurgy and Materials; Brno, Czech Republic. 23–25 May 2012; pp. 1227–1233.

Gomes F., Barbosa J., Ribeiro C.A.S. Aluminium Evaporation during Ceramic Crucible Induction Melting of Titanium Aluminides. Mater. Sci. Forum. 2012;730:697–702. doi: 10.4028/www.scientific.net/MSF.730-732.697. DOI

Yanqing S., Jingjie G., Jun J., Guizhong L., Yuan L. Composition control of a TiAl melt during the induction skull melting (ISM) proces. J. Alloys Compd. 2002;334:261–266. doi: 10.1016/S0925-8388(01)01766-2. DOI

Blacha L., Siwiec G., Oleksiak B. Loss of aluminium during the process of Ti-Al-V alloys melting in a vacuum induction melting (VIM) furnace. Metalurgija. 2013;52:301–304.

Kuchar L., Drapala J. Metallurgy of Pure Metals. Cambridge International Science Publishing; Cambridge, UK: 2007. 190p.

Okamoto H., Massalski T.B. Binary alloy phase diagrams requiring further studies. J. Phase Equilibria Diffus. 1994;15:500–521. doi: 10.1007/BF02649400. DOI

Kursa M. TiAl Intermetallic Compounds and Alloys on Their Basis. 1st ed. VSB—Technical University of Ostrava; Ostrava, Czech Republic: 2005.

Andersson J.-O., Helander T., Höglund L., Shi P., Sundman B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 2002;26:273–312. doi: 10.1016/s0364-5916(02)00037-8. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Processing and Microstructure of As-Cast Ti-45Al-2W-xC Alloys

. 2022 Jul 20 ; 15 (14) : . [epub] 20220720

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...