Metallurgical Preparation of Nb-Al and W-Al Intermetallic Compounds and Characterization of Their Microstructure and Phase Transformations by DTA Technique
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.1.05/2.1.00/19.0387
Ministerstvo Školství, Mládeže a Tělovýchovy
SP2020/56
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32344652
PubMed Central
PMC7221674
DOI
10.3390/molecules25082001
PII: molecules25082001
Knihovny.cz E-zdroje
- Klíčová slova
- differential thermal analysis, intermetallics, microstructure, niobium aluminide, plasma arc melting, tungsten aluminide, vacuum induction melting,
- MeSH
- algoritmy MeSH
- chemické modely MeSH
- komplexní sloučeniny chemie MeSH
- molekulární struktura MeSH
- niob chemie MeSH
- slitiny chemie MeSH
- spektrální analýza MeSH
- termodynamika MeSH
- testování materiálů MeSH
- tranzitní teplota MeSH
- změna skupenství * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplexní sloučeniny MeSH
- niob MeSH
- slitiny MeSH
The possibilities of metallurgical preparation of 40Nb-60Al and 15W-85Al intermetallic compounds (in at.%) by plasma arc melting (PAM) and vacuum induction melting (VIM) were studied. Both methods allow easy preparation of Nb-Al alloys; however, significant evaporation of Al was observed during the melting, which affected the resulting chemical composition. The preparation of W-Al alloys was more problematic because there was no complete re-melting of W during PAM and VIM. However, the combination of PAM and VIM allowed the preparation of W-Al alloy without any non-melted parts. The microstructure of Nb-Al alloys consisted of Nb2Al and NbAl3 intermetallic phases, and W-Al alloys consisted mainly of needle-like WAl4 intermetallic phase and Al matrix. The effects of melting conditions on chemical composition, homogeneity, and microstructure were determined. Differential thermal analysis was used to determine melting and phase transformation temperatures of the prepared alloys.
Zobrazit více v PubMed
Hanada S. Encyclopedia of Materials: Science and Technology. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2001. Intermetallics: Niobium aluminides; pp. 4232–4236.
Hanada S. Niobium aluminides. Curr. Opin. Solid State Mater. Sci. 1997;2:279–283. doi: 10.1016/S1359-0286(97)80115-5. DOI
Yan X., Fray D.J. Synthesis of niobium aluminides by electro-deoxidation of oxides. J. Alloy. Compd. 2009;486:154–161. doi: 10.1016/j.jallcom.2009.06.176. DOI
Glowacki B. Niobium aluminide as a source of high-current superconductors. Intermet. 1999;7:117–140. doi: 10.1016/S0966-9795(98)00084-3. DOI
Peng L. Synthesis and mechanical properties of niobium aluminide-based composites. Mater. Sci. Eng. A. 2008;480:232–236. doi: 10.1016/j.msea.2007.07.046. DOI
Sina H., Iyengar S. Studies on the formation of aluminides in heated Nb–Al powder mixtures. J. Alloy. Compd. 2015;628:9–19. doi: 10.1016/j.jallcom.2014.12.151. DOI
Gauthier V., Josse C., Bernard F., Gaffet E., Larpin J. Synthesis of niobium aluminides using mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing process. Mater. Sci. Eng. A. 1999;265:117–128. doi: 10.1016/S0921-5093(98)01141-1. DOI
Loser W., Hermann R., Leonhardt M., Stephan D., Bormann R. Metastable phase transformation in undercooled near-eutectic Nb-Al alloys. Mater. Sci. Eng. A. 1997;224:53–60. doi: 10.1016/S0921-5093(96)10559-1. DOI
Zhang H., Feng P., Akhtar F. Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism. Sci. Rep. 2017;7:12391. doi: 10.1038/s41598-017-12302-w. PubMed DOI PMC
Chen D., Chen Z., Cai J., Chen Z. Preparation of W–Al intermetallic compound powders by a mechanochemical approach. J. Alloy. Compd. 2008;461:L23–L25. doi: 10.1016/j.jallcom.2007.07.058. DOI
Unuvar C., Fredrick D., Anselmi-Tamburini U., Shaw B., Manerbino A., Guigné J., Munir Z. Dissolution and precipitation under gravitational conditions in the W–Al system. Intermetallics. 2007;15:363–370. doi: 10.1016/j.intermet.2006.08.007. DOI
Unuvar C., Fredrick D., Anselmi-Tamburini U., Shaw B., Manerbino A., Guigné J., Munir Z. Gravity effects on reactive settling in the Al–W system in SHS. Intermetallics. 2007;15:294–304. doi: 10.1016/j.intermet.2006.07.001. DOI
Dembovsky V. Plasma Metallurgy: The Principles, SNTL, Praha. Elsevier; Amsterdam, The Netherlands: 1985.
Frkanova K., Lapin J. Relationship between microstructure and cooling rate in air-hardenable TiAl-based alloy; Proceedings of the METAL 2012: International Conference on Metallurgy and Materials; Brno, Czech Republic. 23–25 May 2012; pp. 1227–1233.
Gomes F., Barbosa J., Ribeiro C.A.S. Aluminium Evaporation during Ceramic Crucible Induction Melting of Titanium Aluminides. Mater. Sci. Forum. 2012;730:697–702. doi: 10.4028/www.scientific.net/MSF.730-732.697. DOI
Yanqing S., Jingjie G., Jun J., Guizhong L., Yuan L. Composition control of a TiAl melt during the induction skull melting (ISM) proces. J. Alloys Compd. 2002;334:261–266. doi: 10.1016/S0925-8388(01)01766-2. DOI
Blacha L., Siwiec G., Oleksiak B. Loss of aluminium during the process of Ti-Al-V alloys melting in a vacuum induction melting (VIM) furnace. Metalurgija. 2013;52:301–304.
Kuchar L., Drapala J. Metallurgy of Pure Metals. Cambridge International Science Publishing; Cambridge, UK: 2007. 190p.
Okamoto H., Massalski T.B. Binary alloy phase diagrams requiring further studies. J. Phase Equilibria Diffus. 1994;15:500–521. doi: 10.1007/BF02649400. DOI
Kursa M. TiAl Intermetallic Compounds and Alloys on Their Basis. 1st ed. VSB—Technical University of Ostrava; Ostrava, Czech Republic: 2005.
Andersson J.-O., Helander T., Höglund L., Shi P., Sundman B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 2002;26:273–312. doi: 10.1016/s0364-5916(02)00037-8. DOI
Processing and Microstructure of As-Cast Ti-45Al-2W-xC Alloys