A widespread toxin-antitoxin system exploiting growth control via alarmone signaling
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/S00257X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
32345719
PubMed Central
PMC7229694
DOI
10.1073/pnas.1916617117
PII: 1916617117
Knihovny.cz E-zdroje
- Klíčová slova
- alarmone, antitoxin, ppApp, ppGpp, toxin,
- MeSH
- adeninnukleotidy metabolismus MeSH
- Bacteria růst a vývoj metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- databáze genetické MeSH
- fyziologický stres fyziologie MeSH
- guanosinpentafosfát metabolismus MeSH
- guanosintetrafosfát metabolismus MeSH
- guanosintrifosfát metabolismus MeSH
- ligasy metabolismus MeSH
- pyrofosfatasy metabolismus MeSH
- regulace genové exprese u bakterií genetika MeSH
- signální transdukce MeSH
- systémy toxin-antitoxin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adeninnukleotidy MeSH
- adenosine 3'-diphosphate 5'-diphosphate MeSH Prohlížeč
- bakteriální proteiny MeSH
- guanosine 3',5'-polyphosphate synthetases MeSH Prohlížeč
- guanosine-3',5'-bis(diphosphate) 3'-pyrophosphatase MeSH Prohlížeč
- guanosinpentafosfát MeSH
- guanosintetrafosfát MeSH
- guanosintrifosfát MeSH
- ligasy MeSH
- pyrofosfatasy MeSH
Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.
Department of Molecular Biology Umeå University 901 87 Umeå Sweden
Department of Molecular Biology Umeå University 901 87 Umeå Sweden;
Institute of Technology University of Tartu 50411 Tartu Estonia
Laboratory for Molecular Infection Medicine Sweden Umeå University SE 901 87 Umeå Sweden
Walloon Excellence in Life Sciences and Biotechnology 1200 Brussels Belgium
Zobrazit více v PubMed
Hauryliuk V., Atkinson G. C., Murakami K. S., Tenson T., Gerdes K., Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 298–309 (2015). PubMed PMC
Ryals J., Little R., Bremer H., Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate. J. Bacteriol. 151, 1261–1268 (1982). PubMed PMC
Atkinson G. C., Tenson T., Hauryliuk V., The RelA/SpoT homolog (RSH) superfamily: Distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 6, e23479 (2011). PubMed PMC
Dandekar T., Snel B., Huynen M., Bork P., Conservation of gene order: A fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324–328 (1998). PubMed
Saha C. K., Sanchez Pires R., Brolin H., Atkinson G. C., Predicting functional associations using flanking genes (FlaGs). bioRxiv:10.1101/362095 (4 July 2018).
Harms A., Brodersen D. E., Mitarai N., Gerdes K., Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Mol. Cell 70, 768–784 (2018). PubMed
Xiao H., et al. , Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980–5990 (1991). PubMed
Dedrick R. M., et al. , Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2, 16251 (2017). PubMed PMC
Marchler-Bauer A., et al. , CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45, D200–D203 (2017). PubMed PMC
Ahmad S., et al. , An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature 575, 674–678 (2019). PubMed PMC
Kaldalu N., Kasari V., Atkinson G., Tenson T., “Type II toxin-antitoxin loci: The unusual mqsRA locus” in Prokaryotic Toxin-Antitoxins, Gerdes K., Ed. (Springer, Berlin, Germany, 2013), pp. 93–105.
Aakre C. D., Phung T. N., Huang D., Laub M. T., A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. Mol. Cell 52, 617–628 (2013). PubMed PMC
Jurėnas D., et al. , AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet. Nat. Chem. Biol. 13, 640–646 (2017). PubMed
Manav M. C., et al. , Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP. J. Biol. Chem. 293, 3254–3264 (2018). PubMed PMC
Geiger T., Kästle B., Gratani F. L., Goerke C., Wolz C., Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J. Bacteriol. 196, 894–902 (2014). PubMed PMC
Beljantseva J., et al. , Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA. Proc. Natl. Acad. Sci. U.S.A. 114, 3726–3731 (2017). PubMed PMC
Abranches J., et al. , The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J. Bacteriol. 191, 2248–2256 (2009). PubMed PMC
Steinchen W., et al. , Structural and mechanistic divergence of the small (p)ppGpp synthetases RelP and RelQ. Sci. Rep. 8, 2195 (2018). PubMed PMC
Sun D., et al. , A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat. Struct. Mol. Biol. 17, 1188–1194 (2010). PubMed
Hogg T., Mechold U., Malke H., Cashel M., Hilgenfeld R., Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected]. Cell 117, 57–68 (2004). PubMed
Ferullo D. J., Lovett S. T., The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet. 4, e1000300 (2008). PubMed PMC
Winslow R. M., Lazzarini R. A., Amino acid regulation of the rates of synthesis and chain elongation of ribonucleic acid in Escherichia coli. J. Biol. Chem. 244, 3387–3392 (1969). PubMed
Sobala M., Bruhn-Olszewska B., Cashel M., Potrykus K., Methylobacterium extorquens RSH enzyme synthesizes (p)ppGpp and pppApp in vitro and in vivo, and leads to discovery of pppApp synthesis in Escherichia coli. Front. Microbiol. 10, 859 (2019). PubMed PMC
Varik V., Oliveira S. R. A., Hauryliuk V., Tenson T., HPLC-based quantification of bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp. Sci. Rep. 7, 11022 (2017). PubMed PMC
Oki T., Yoshimoto A., Sato S., Takamatsu A., Purine nucleotide pyrophosphotransferase from Streptomyces morookaensis, capable of synthesizing pppApp and pppGpp. Biochim. Biophys. Acta 410, 262–272 (1975). PubMed
Schattenkerk C., Wreesmann C. T., van der Marel G. A., van Boom J. H., Synthesis of riboguanosine pentaphosphate ppprGpp (Magic Spot II) via a phosphotriester approach. Nucleic Acids Res. 13, 3635–3649 (1985). PubMed PMC
Te Winkel J. D., Gray D. A., Seistrup K. H., Hamoen L. W., Strahl H., Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 4, 29 (2016). PubMed PMC
Roth B. L., Poot M., Yue S. T., Millard P. J., Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol. 63, 2421–2431 (1997). PubMed PMC
Takada H., et al. , The C-terminal RRM/ACT domain is crucial for fine-tuning the activation of ‘long’ RelA-SpoT Homolog enzymes by ribosomal complexes. Front. Microbiol. 11, 277 (2020). PubMed PMC
Hatfull G. F., Hendrix R. W., Bacteriophages and their genomes. Curr. Opin. Virol. 1, 298–303 (2011). PubMed PMC
Arndt D., et al. , PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16-21 (2016). PubMed PMC
Santos S. B., et al. , Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: Creation of a new phage genus. J. Virol. 85, 11265–11273 (2011). PubMed PMC
Kim M., Kim S., Ryu S., Complete genome sequence of bacteriophage SSU5 specific for Salmonella enterica serovar Typhimurium rough strains. J. Virol. 86, 10894 (2012). PubMed PMC
Horesh G., et al. , SLING: A tool to search for linked genes in bacterial datasets. Nucleic Acids Res. 46, e128 (2018). PubMed PMC
Wei Y. Q., Bi D. X., Wei D. Q., Ou H. Y., Prediction of type II toxin-antitoxin loci in Klebsiella pneumoniae genome sequences. Interdiscip. Sci. 8, 143–149 (2016). PubMed
Leplae R., et al. , Diversity of bacterial type II toxin-antitoxin systems: A comprehensive search and functional analysis of novel families. Nucleic Acids Res. 39, 5513–5525 (2011). PubMed PMC
Fernández L., et al. , Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Sci. Rep. 7, 40965 (2017). PubMed PMC
Slomińska M., Neubauer P., Wegrzyn G., Regulation of bacteriophage lambda development by guanosine 5′-diphosphate-3′-diphosphate. Virology 262, 431–441 (1999). PubMed
Tabib-Salazar A., et al. , T7 phage factor required for managing RpoS in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 115, E5353–E5362 (2018). PubMed PMC
Patterson-West J., et al. , The E. coli global regulator DksA reduces transcription during T4 infection. Viruses 10, E308 (2018). PubMed PMC
Blower T. R., et al. , A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat. Struct. Mol. Biol. 18, 185–190 (2011). PubMed PMC
Goormaghtigh F., et al. , Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II persister cells. MBio 9, e00640-18 (2018). PubMed PMC
Harms A., Fino C., Sørensen M. A., Semsey S., Gerdes K., Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. MBio 8, e01964-17 (2017). PubMed PMC
Guzman L. M., Belin D., Carson M. J., Beckwith J., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995). PubMed PMC
Brosius J., Holy A., Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc. Natl. Acad. Sci. U.S.A. 81, 6929–6933 (1984). PubMed PMC
Stamatakis A., RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). PubMed PMC
Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q., IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). PubMed PMC