Near-infrared observations of active asteroid (3200) Phaethon reveal no evidence for hydration
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
32345969
PubMed Central
PMC7188859
DOI
10.1038/s41467-020-15637-7
PII: 10.1038/s41467-020-15637-7
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Asteroid (3200) Phaethon is an active near-Earth asteroid and the parent body of the Geminid Meteor Shower. Because of its small perihelion distance, Phaethon's surface reaches temperatures sufficient to destabilize hydrated materials. We conducted rotationally resolved spectroscopic observations of this asteroid, mostly covering the northern hemisphere and the equatorial region, beyond 2.5-µm to search for evidence of hydration on its surface. Here we show that the observed part of Phaethon does not exhibit the 3-µm hydrated mineral absorption (within 2σ). These observations suggest that Phaethon's modern activity is not due to volatile sublimation or devolatilization of phyllosilicates on its surface. It is possible that the observed part of Phaethon was originally hydrated and has since lost volatiles from its surface via dehydration, supporting its connection to the Pallas family, or it was formed from anhydrous material.
Department of Astronomy and Planetary Sciences Northern Arizona University Flagstaff AZ 86011 USA
Institute of Astronomy Charles University CZ 18000 Prague 8 Czech Republic
JETS ARES NASA Johnson Space Center Houston TX 77058 3696 USA
Johns Hopkins University Applied Physics Laboratory Laurel MD 20273 USA
Lunar and Planetary Laboratory University of Arizona Tucson AZ 85721 0092 USA
Planetary Exploration Research Center Chiba Institute of Technology Narashino Japan
See more in PubMed
Whipple FL. TB and the Geminid meteors. IAU Circ. 1983;3881:1.
Jewitt D, Li J. Activity in Geminid parent (3200) Phaethon. Astron. J. 2010;140:1519–1527. doi: 10.1088/0004-6256/140/5/1519. DOI
Jewitt D, Li J, Agarwal J. The dust tail of asteroid (3200) Phaethon. Astrophys. J. Lett. 2013;771:L36. doi: 10.1088/2041-8205/771/2/L36. DOI
Yu LL, Ip WH, Spohn T. What mechanisms dominate the activity of Geminid Parent (3200) Phaethon? Mon. Not. R. Astron. Soc. 2019;482:4243–4252. doi: 10.1093/mnras/sty3023. DOI
Ohtsuka K, et al. Solar radiation heating effects on 3200 Phaethon. Publ. Astron. Soc. Jpn. 2009;61:1375–1387. doi: 10.1093/pasj/61.6.1375. DOI
Hanuš J, et al. Near-Earth asteroid (3200) Phaethon: characterization of its orbit, spin state, and thermophysical parameters. Astron. Astrophys. 2016;592:A34. doi: 10.1051/0004-6361/201628666. DOI
Taylor PA, et al. Arecibo radar observations of near-Earth asteroid (3200) Phaethon during the 2017 apparition. Planet. Space Sci. 2018;167:1–8. doi: 10.1016/j.pss.2019.01.009. DOI
Tedesco EF, Noah PV, Noah M, Price SD. The supplemental IRAS minor planet survey. Astron. J. 2002;123:1056–1085. doi: 10.1086/338320. DOI
Kareta, et al. Rotationally resolved spectroscopic characterization of near-earth object (3200) Phaethon. Astron. J. 2018;156:287. doi: 10.3847/1538-3881/aaeb8a. DOI
Masiero JR, Wright EL, Mainzer AK. Thermophysical modeling of NEOWISE observations of DESTINY+ Targets Phaethon and 2005 UD. Astron. J. 2019;158:97. doi: 10.3847/1538-3881/ab31a6. DOI
Bus SJ, Binzel RP. Phase II of the Small Main-belt Asteroid Spectroscopic Survey. A feature-based Taxon. Icarus. 2002;158:146–177. doi: 10.1006/icar.2002.6856. DOI
Tholen, D. J. Asteroid Taxonomy from Cluster Analysis of Photometry. Thesis, Univ. Arizona (1984).
Rivkin AS, DeMeo F. How many hydrated NEOs are there? J. Geophys. Res. 2019;124:128–142. doi: 10.1029/2018JE005584. DOI
Hamilton VE, et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat. Astron. 2019;3:332–340. doi: 10.1038/s41550-019-0722-2. PubMed DOI PMC
Cellino, A., Bus, S. J., Doressoundiram, A., Lazzaro, D. In Asteroids III (eds. Bottke Jr., W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 633–643 (Univ. Arizona, 2002).
Arai T, et al. Destiny+ mission: flyby of Geminids parent asteroid (3200) Phaethon and in-situ analyses of dust accreting on the earth. Lunar Planet. Inst. Sci. Conf. Abstr. 2018;49:2570.
Lauretta, et al. The unexpected surface of asteroid (101955) Bennu. Nature. 2019;568:55–60. doi: 10.1038/s41586-019-1033-6. PubMed DOI PMC
Clark BE. Asteroid (101955) 1999 RQ36: spectroscopy from 0.4 to 2.4μm and meteorite analogs. Icarus. 2011;216:462–475. doi: 10.1016/j.icarus.2011.08.021. DOI
Hergenrother CW, et al. The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations. Nat. Commun. 2019;10:1291. doi: 10.1038/s41467-019-09213-x. PubMed DOI PMC
Hanuš J, et al. (3200) Phaethon: bulk density from Yarkovsky drift detection. Astron. Astrophys. 2018;620:L8. doi: 10.1051/0004-6361/201834228. DOI
Lazzarin, et al. Phaethon variability during December 2017 closest approach to Earth. Planet. Space Sci. 2019;165:115. doi: 10.1016/j.pss.2018.11.006. DOI
Li J, Jewitt D. Recurrent perihelion activity in (3200) Phaethon. Astron. J. 2013;145:6. doi: 10.1088/0004-6256/145/6/154. DOI
de León J, Campins H, Tsiganis K, Morbidelli A, Licandro J. Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower. Astron. Astrophys. 2010;513:A26. doi: 10.1051/0004-6361/200913609. DOI
Licandro J, Campins H, Mothé-Diniz T, Pinilla-Alonso N, de León J. The nature of comet-asteroid transition object (3200) Phaethon. Astron. Astrophys. 2007;461:751–757. doi: 10.1051/0004-6361:20065833. DOI
Alí-Lagoa V, et al. Physical properties of B-type asteroids from WISE data. Astron. Astrophys. 2013;554:A71. doi: 10.1051/0004-6361/201220680. DOI
Weber JN, Creer RT. Dehydration of serpentine: heat of reaction and reaction kinetics at PH2O = 1 ATM. Am. Miner. 1965;50:450–463.
Springmann A, et al. Thermal alteration of labile elements in carbonaceous chondrites. Icarus. 2019;324:104–119. doi: 10.1016/j.icarus.2018.12.022. DOI
Lauretta, et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science. 2019;366:6470. doi: 10.1126/science.aay3544. PubMed DOI
Rayner JT, et al. SpeX: a medium-resolution 0.8–5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pac. 2003;155:362–382. doi: 10.1086/367745. DOI
Takir D, Emery JP. Outer Main Belt asteroids: identification and distribution of four 3-um spectral groups. Icarus. 2012;219:641–654. doi: 10.1016/j.icarus.2012.02.022. DOI
Takir D, Emery JP, McSween HY., Jr. Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt. Icarus. 2015;257:185–193. doi: 10.1016/j.icarus.2015.04.042. DOI
Cushing MC. Spextool: a spectral extraction package for SpeX, a 0.8–5.5 micron cross-dispersed spectrograph. Publ. Astronom. Soc. Pac. 2014;116:818.
Rivkin, et al. Hydrogen concentrations on C-class asteroids derived from remote sensing. Meteorit. Planet. Sci. 2003;38:1383–1398. doi: 10.1111/j.1945-5100.2003.tb00321.x. DOI
Harris AW. A thermal model for near-Earth asteroids. Icarus. 1998;131:291–301. doi: 10.1006/icar.1997.5865. DOI
Lebofsky LA. Infrared reflectance spectra of asteroids: a search for water of hydration. Astron. J. 1980;85:573–585. doi: 10.1086/112714. DOI
Ansdell M, et al. Refined rotational period, pole solution, and shape model for (3200) Phaethon. Astrophys. J. 2014;793:50. doi: 10.1088/0004-637X/793/1/50. DOI
Harris, A. W. & Lagerros, J. S. V. In Asteroids III (eds. Bottke Jr., W. F., Cellino, P., Paolicchi, P. & Binzel, R. P.) 205 (Univ. Arizona, 2002).
Clark RN, Roush TL. Reflectance spectroscopy: quantitative analysis: techniques for remote sensing applications. J. Geophys. Res. 1984;89:6329–6340. doi: 10.1029/JB089iB07p06329. DOI
Taylor, J. R. An Introduction to Error Analysis. 55 (University Science Books, 1982).