Near-infrared observations of active asteroid (3200) Phaethon reveal no evidence for hydration

. 2020 Apr 28 ; 11 (1) : 2050. [epub] 20200428

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid32345969
Odkazy

PubMed 32345969
PubMed Central PMC7188859
DOI 10.1038/s41467-020-15637-7
PII: 10.1038/s41467-020-15637-7
Knihovny.cz E-zdroje

Asteroid (3200) Phaethon is an active near-Earth asteroid and the parent body of the Geminid Meteor Shower. Because of its small perihelion distance, Phaethon's surface reaches temperatures sufficient to destabilize hydrated materials. We conducted rotationally resolved spectroscopic observations of this asteroid, mostly covering the northern hemisphere and the equatorial region, beyond 2.5-µm to search for evidence of hydration on its surface. Here we show that the observed part of Phaethon does not exhibit the 3-µm hydrated mineral absorption (within 2σ). These observations suggest that Phaethon's modern activity is not due to volatile sublimation or devolatilization of phyllosilicates on its surface. It is possible that the observed part of Phaethon was originally hydrated and has since lost volatiles from its surface via dehydration, supporting its connection to the Pallas family, or it was formed from anhydrous material.

Zobrazit více v PubMed

Whipple FL. TB and the Geminid meteors. IAU Circ. 1983;3881:1.

Jewitt D, Li J. Activity in Geminid parent (3200) Phaethon. Astron. J. 2010;140:1519–1527. doi: 10.1088/0004-6256/140/5/1519. DOI

Jewitt D, Li J, Agarwal J. The dust tail of asteroid (3200) Phaethon. Astrophys. J. Lett. 2013;771:L36. doi: 10.1088/2041-8205/771/2/L36. DOI

Yu LL, Ip WH, Spohn T. What mechanisms dominate the activity of Geminid Parent (3200) Phaethon? Mon. Not. R. Astron. Soc. 2019;482:4243–4252. doi: 10.1093/mnras/sty3023. DOI

Ohtsuka K, et al. Solar radiation heating effects on 3200 Phaethon. Publ. Astron. Soc. Jpn. 2009;61:1375–1387. doi: 10.1093/pasj/61.6.1375. DOI

Hanuš J, et al. Near-Earth asteroid (3200) Phaethon: characterization of its orbit, spin state, and thermophysical parameters. Astron. Astrophys. 2016;592:A34. doi: 10.1051/0004-6361/201628666. DOI

Taylor PA, et al. Arecibo radar observations of near-Earth asteroid (3200) Phaethon during the 2017 apparition. Planet. Space Sci. 2018;167:1–8. doi: 10.1016/j.pss.2019.01.009. DOI

Tedesco EF, Noah PV, Noah M, Price SD. The supplemental IRAS minor planet survey. Astron. J. 2002;123:1056–1085. doi: 10.1086/338320. DOI

Kareta, et al. Rotationally resolved spectroscopic characterization of near-earth object (3200) Phaethon. Astron. J. 2018;156:287. doi: 10.3847/1538-3881/aaeb8a. DOI

Masiero JR, Wright EL, Mainzer AK. Thermophysical modeling of NEOWISE observations of DESTINY+ Targets Phaethon and 2005 UD. Astron. J. 2019;158:97. doi: 10.3847/1538-3881/ab31a6. DOI

Bus SJ, Binzel RP. Phase II of the Small Main-belt Asteroid Spectroscopic Survey. A feature-based Taxon. Icarus. 2002;158:146–177. doi: 10.1006/icar.2002.6856. DOI

Tholen, D. J. Asteroid Taxonomy from Cluster Analysis of Photometry. Thesis, Univ. Arizona (1984).

Rivkin AS, DeMeo F. How many hydrated NEOs are there? J. Geophys. Res. 2019;124:128–142. doi: 10.1029/2018JE005584. DOI

Hamilton VE, et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat. Astron. 2019;3:332–340. doi: 10.1038/s41550-019-0722-2. PubMed DOI PMC

Cellino, A., Bus, S. J., Doressoundiram, A., Lazzaro, D. In Asteroids III (eds. Bottke Jr., W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 633–643 (Univ. Arizona, 2002).

Arai T, et al. Destiny+ mission: flyby of Geminids parent asteroid (3200) Phaethon and in-situ analyses of dust accreting on the earth. Lunar Planet. Inst. Sci. Conf. Abstr. 2018;49:2570.

Lauretta, et al. The unexpected surface of asteroid (101955) Bennu. Nature. 2019;568:55–60. doi: 10.1038/s41586-019-1033-6. PubMed DOI PMC

Clark BE. Asteroid (101955) 1999 RQ36: spectroscopy from 0.4 to 2.4μm and meteorite analogs. Icarus. 2011;216:462–475. doi: 10.1016/j.icarus.2011.08.021. DOI

Hergenrother CW, et al. The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations. Nat. Commun. 2019;10:1291. doi: 10.1038/s41467-019-09213-x. PubMed DOI PMC

Hanuš J, et al. (3200) Phaethon: bulk density from Yarkovsky drift detection. Astron. Astrophys. 2018;620:L8. doi: 10.1051/0004-6361/201834228. DOI

Lazzarin, et al. Phaethon variability during December 2017 closest approach to Earth. Planet. Space Sci. 2019;165:115. doi: 10.1016/j.pss.2018.11.006. DOI

Li J, Jewitt D. Recurrent perihelion activity in (3200) Phaethon. Astron. J. 2013;145:6. doi: 10.1088/0004-6256/145/6/154. DOI

de León J, Campins H, Tsiganis K, Morbidelli A, Licandro J. Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower. Astron. Astrophys. 2010;513:A26. doi: 10.1051/0004-6361/200913609. DOI

Licandro J, Campins H, Mothé-Diniz T, Pinilla-Alonso N, de León J. The nature of comet-asteroid transition object (3200) Phaethon. Astron. Astrophys. 2007;461:751–757. doi: 10.1051/0004-6361:20065833. DOI

Alí-Lagoa V, et al. Physical properties of B-type asteroids from WISE data. Astron. Astrophys. 2013;554:A71. doi: 10.1051/0004-6361/201220680. DOI

Weber JN, Creer RT. Dehydration of serpentine: heat of reaction and reaction kinetics at PH2O = 1 ATM. Am. Miner. 1965;50:450–463.

Springmann A, et al. Thermal alteration of labile elements in carbonaceous chondrites. Icarus. 2019;324:104–119. doi: 10.1016/j.icarus.2018.12.022. DOI

Lauretta, et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science. 2019;366:6470. doi: 10.1126/science.aay3544. PubMed DOI

Rayner JT, et al. SpeX: a medium-resolution 0.8–5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pac. 2003;155:362–382. doi: 10.1086/367745. DOI

Takir D, Emery JP. Outer Main Belt asteroids: identification and distribution of four 3-um spectral groups. Icarus. 2012;219:641–654. doi: 10.1016/j.icarus.2012.02.022. DOI

Takir D, Emery JP, McSween HY., Jr. Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt. Icarus. 2015;257:185–193. doi: 10.1016/j.icarus.2015.04.042. DOI

Cushing MC. Spextool: a spectral extraction package for SpeX, a 0.8–5.5 micron cross-dispersed spectrograph. Publ. Astronom. Soc. Pac. 2014;116:818.

Rivkin, et al. Hydrogen concentrations on C-class asteroids derived from remote sensing. Meteorit. Planet. Sci. 2003;38:1383–1398. doi: 10.1111/j.1945-5100.2003.tb00321.x. DOI

Harris AW. A thermal model for near-Earth asteroids. Icarus. 1998;131:291–301. doi: 10.1006/icar.1997.5865. DOI

Lebofsky LA. Infrared reflectance spectra of asteroids: a search for water of hydration. Astron. J. 1980;85:573–585. doi: 10.1086/112714. DOI

Ansdell M, et al. Refined rotational period, pole solution, and shape model for (3200) Phaethon. Astrophys. J. 2014;793:50. doi: 10.1088/0004-637X/793/1/50. DOI

Harris, A. W. & Lagerros, J. S. V. In Asteroids III (eds. Bottke Jr., W. F., Cellino, P., Paolicchi, P. & Binzel, R. P.) 205 (Univ. Arizona, 2002).

Clark RN, Roush TL. Reflectance spectroscopy: quantitative analysis: techniques for remote sensing applications. J. Geophys. Res. 1984;89:6329–6340. doi: 10.1029/JB089iB07p06329. DOI

Taylor, J. R. An Introduction to Error Analysis. 55 (University Science Books, 1982).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...