Estimating suicide occurrence statistics using Google Trends
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32355600
PubMed Central
PMC7175644
DOI
10.1140/epjds/s13688-016-0094-0
PII: 94
Knihovny.cz E-zdroje
- Klíčová slova
- Google Trends, nowcasting, official statistics, search data,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Data on the number of people who have committed suicide tends to be reported with a substantial time lag of around two years. We examine whether online activity measured by Google searches can help us improve estimates of the number of suicide occurrences in England before official figures are released. Specifically, we analyse how data on the number of Google searches for the terms 'depression' and 'suicide' relate to the number of suicides between 2004 and 2013. We find that estimates drawing on Google data are significantly better than estimates using previous suicide data alone. We show that a greater number of searches for the term 'depression' is related to fewer suicides, whereas a greater number of searches for the term 'suicide' is related to more suicides. Data on suicide related search behaviour can be used to improve current estimates of the number of suicide occurrences. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1140/epjds/s13688-016-0094-0) contains supplementary material.
Zobrazit více v PubMed
Barraclough B, Pallis D. Depression followed by suicide: a comparison of depressed suicides with living depressives. Psychol Med. 1975;5:55–61. doi: 10.1017/S0033291700007212. PubMed DOI
Pallis D, Barraclough B, Levely A, Jenkins J, Sainsbury P. Estimating suicide risk among attempted suicides: I. The development of new clinical scales. Br J Psychiatry. 1982;141:37–44. doi: 10.1192/bjp.141.1.37. PubMed DOI
Burk F, Kurz A, Moller H-J. Suicide risk scales: do they help to predict suicidal behaviour? Eur Arch Psychiatr Neurol Sci. 1985;235:153–157. doi: 10.1007/BF00380986. PubMed DOI
Kosky R, Silburn S, Zurbrick S. Are children and adolescents who have suicidal thoughts different from those who attempt suicide? J Nerv Ment Dis. 1990;178:1–67. doi: 10.1097/00005053-199001000-00007. PubMed DOI
Loftin C, McDowall D, Wiersema B, Cottey T. Effects of restrictive licensing of handguns on homicide and suicide in the District of Columbia. N Engl J Med. 1991;325:1615–1620. doi: 10.1056/NEJM199112053252305. PubMed DOI
Hughes D. Suicide and violence assessment in psychiatry. Gen Hosp Psych. 1996;18:416–421. doi: 10.1016/S0163-8343(96)00037-0. PubMed DOI
Pirkis J, Burgess P, Meadows G, Dunt D. Suicidal ideation and suicide attempts as predictors of mental health service use. Med J Aust. 2001;175:542–545. PubMed
Rusch N, Zlati A, Black G, Thornicroft G. Does the stigma of mental illness contribute to suicidality? Br J Psychiatry. 2014;205:257–259. doi: 10.1192/bjp.bp.114.145755. PubMed DOI
Kolves K, De Leo D. Suicide rates in children aged 10-14 years worldwide: changes in the past two decades. Br J Psychiatry. 2014;205:283–285. doi: 10.1192/bjp.bp.114.144402. PubMed DOI
Schapiro M, Ahlburg D. Suicide: the ultimate cost of unemployment. J Post Keynes Econ. 1982;5:276–280. doi: 10.1080/01603477.1982.11489362. DOI
Ahlburg D, Schapiro M. Socioeconomic ramifications of changing cohort size: an analysis of U.S. postwar suicide rates by age and sex. Demography. 1984;21:97–108. doi: 10.2307/2061030. PubMed DOI
Wasserman I. Imitation and suicide: a reexamination of the Werther effect. Am Sociol Rev. 1984;49:427–436. doi: 10.2307/2095285. DOI
Platt S. Unemployment and suicidal behaviour: a review of the literature. Soc Sci Med. 1984;19:93–115. doi: 10.1016/0277-9536(84)90276-4. PubMed DOI
Stack S, Haas A. The effect of unemployment duration on national suicide rates: a time series analysis, 1948-1982. Sociol Focus. 1984;17:17–29. doi: 10.1080/00380237.1984.10570459. PubMed DOI
Stack S. The effect of female participation in the labor force on suicide: a time series analysis, 1948-1980. Sociol Forum. 1987;2:257–277. doi: 10.1007/BF01124166. DOI
Morrell S, Taylor R, Quine S, Kerr C. Suicide and unemployment in Australia 1907-1990. Soc Sci Med. 1993;36:749–756. doi: 10.1016/0277-9536(93)90035-3. PubMed DOI
Linkov F, Bovbjerg DH, Freese KE, Ramanathan R, Eid GM, Gourash W. Bariatric surgery interest around the world: what Google Trends can teach us. Surg Obes Relat Dis. 2014;10:533–539. doi: 10.1016/j.soard.2013.10.007. PubMed DOI
Telem DA, Pryor AD. Google Trends: is it a real tool to predict the future of bariatric surgery or merely a marketing landmine? Surg Obes Relat Dis. 2014;10:538–539. doi: 10.1016/j.soard.2013.11.009. PubMed DOI
McCallum ML, Bury GW. Google search patterns suggest declining interest in the environment. Biodivers Conserv. 2013;22:1355–1367. doi: 10.1007/s10531-013-0476-6. DOI
Verissimo D, MacMillan DC, Smith RJ, Crees J, Davies ZG. Has climate change taken prominence over biodiversity conservation? Bioscience. 2014;64:625–629. doi: 10.1093/biosci/biu079. DOI
Polgreen PM, Chen Y, Pennock DM, Nelson FD, Weinstein RA. Using Internet searches for influenza surveillance. Clin Infect Dis. 2008;47:1443–1448. doi: 10.1086/593098. PubMed DOI
Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457:1012–1014. doi: 10.1038/nature07634. PubMed DOI
Carneiro H, Mylonakis E. Google Trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis. 2009;49:1557–1564. doi: 10.1086/630200. PubMed DOI
Seifter A, Schwarzwalder A, Geis K, Aucott J. The utility of ‘Google Trends’ for epidemiological research: Lyme disease as an example. Geosp Health. 2010;4:135–137. doi: 10.4081/gh.2010.195. PubMed DOI
Dugas A, Hsieh Y-H, Levin SR, Pines JM, Mareiniss DP, Mohareb A, Gaydos CA, Perl TM, Rothman RE. Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Clin Infect Dis. 2012;54:463–469. doi: 10.1093/cid/cir883. PubMed DOI PMC
Mocanu D, Baronchelli A, Perra N, Gonçalves B, Zhang Q, Vespignani A. The Twitter of Babel: mapping world languages through microblogging platforms. PLoS ONE. 2013;8:e61981. doi: 10.1371/journal.pone.0061981. PubMed DOI PMC
Metaxas PT, Mustafaraj E. Social media and the elections. Science. 2012;338:472–473. doi: 10.1126/science.1230456. PubMed DOI
Grabowicz PA, Ramasco JJ, Goncalves B, Eguiluz VM. Entangling mobility and interactions in social media. PLoS ONE. 2014;9:e92196. doi: 10.1371/journal.pone.0092196. PubMed DOI PMC
Preis T, Reith D, Stanley HE. Complex dynamics of our economic life on different scales: insights from search engine query data. Philos Trans R Soc A. 2010;368:5707–5719. doi: 10.1098/rsta.2010.0284. PubMed DOI
Goel S, Hofman J, Lehaie S, Pennock DM, Watts DJ. Predicting consumer behavior with Web search. Proc Natl Acad Sci USA. 2010;7:17486–17490. doi: 10.1073/pnas.1005962107. PubMed DOI PMC
Vosen S, Schmidt T. Forecasting private consumption: survey-based indicators vs. Google trends. J Forecast. 2011;30:565–578. doi: 10.1002/for.1213. DOI
Drake MS, Roulstone DT, Thornock JR. Investor information demand: evidence from Google searches around earnings announcements. J Account Res. 2012;50:1001–1040. doi: 10.1111/j.1475-679X.2012.00443.x. DOI
Bordino I, Battiston S, Caldarelli G, Cristelli M, Ukkonen A, Weber I. Web search queries can predict stock market volumes. PLoS ONE. 2012;7:e40014. doi: 10.1371/journal.pone.0040014. PubMed DOI PMC
Preis T, Moat HS, Stanley HE, Bishop SR. Quantifying the advantage of looking forward. Sci Rep. 2012;2:350. PubMed PMC
Preis T, Moat HS, Stanley HE. Quantifying trading behavior in financial markets using Google Trends. Sci Rep. 2013;3:1684. PubMed PMC
Kristoufek L. Can Google Trends search queries contribute to risk diversification? Sci Rep. 2013;3:2713. PubMed PMC
Kristoufek L. Bitcoin meets Google Trends and Wikipedia: quantifying the relationship between phenomena of the Internet era. Sci Rep. 2013;3:3415. PubMed PMC
Moat HS, Curme C, Avakian A, Kenett DY, Stanley HE, Preis T. Quantifying Wikipedia usage patterns before stock market moves. Sci Rep. 2013;3:1801. doi: 10.1038/srep01801. DOI
Curme C, Preis T, Stanley HE, Moat HS. Quantifying the semantics of search behavior before stock market moves. Proc Natl Acad Sci USA. 2014;111:11600–11605. doi: 10.1073/pnas.1324054111. PubMed DOI PMC
Choi H, Varian H. Predicting the present with Google Trends. Econ Rec. 2012;88:2–8. doi: 10.1111/j.1475-4932.2012.00809.x. DOI
Botta F, Moat HS, Preis T. Quantifying crowd size with mobile phone and Twitter data. R Soc Open Sci. 2015;2:150162. doi: 10.1098/rsos.150162. PubMed DOI PMC
Barchiesi D, Moat HS, Alis C, Bishop S, Preis T. Quantifying international travel flows using Flickr. PLoS ONE. 2015;10:e0128470. doi: 10.1371/journal.pone.0128470. PubMed DOI PMC
Barchiesi D, Preis T, Bishop S, Moat HS. Modelling human mobility patterns using photographic data shared online. R Soc Open Sci. 2015;2:150046. doi: 10.1098/rsos.150046. PubMed DOI PMC
Seresinhe CI, Preis T, Moat HS. Quantifying the impact of scenic environments on health. Sci Rep. 2015;5:16899. doi: 10.1038/srep16899. PubMed DOI PMC
Seresinhe CI, Preis T, Moat HS. Quantifying the link between art and property prices in urban neighbourhoods. R Soc Open Sci. 2016;3:160146. doi: 10.1098/rsos.160146. PubMed DOI PMC
Preis T, Moat HS, Bishop SR, Treleaven P, Stanley HE. Quantifying the digital traces of Hurricane Sandy on Flickr. Sci Rep. 2013;3:3141. PubMed PMC
Preis T, Moat HS. Adaptive nowcasting of influenza outbreaks using Google searches. R Soc Open Sci. 2014;1:140095. doi: 10.1098/rsos.140095. PubMed DOI PMC
Moat HS, Preis T, Olivola CY, Liu C, Chater N. Using big data to predict collective behavior in the real world. Behav Brain Sci. 2014;37:92–93. doi: 10.1017/S0140525X13001817. PubMed DOI
Garcia D, Tessone CJ, Mavrodiev P, Perony N. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy. J R Soc Interface. 2014;11:20140623. doi: 10.1098/rsif.2014.0623. PubMed DOI PMC
McCarthy MJ. Internet monitoring of suicide risk in the population. J Affect Disord. 2010;122:277–279. doi: 10.1016/j.jad.2009.08.015. PubMed DOI PMC
Page A, Chang S-S, Gunnell D. Surveillance of Australian suicidal behaviour using the Internet? Aust NZ J Psychiatry. 2011;45:1020–1022. doi: 10.3109/00048674.2011.623660. PubMed DOI
Sueki H. Does the volume of Internet searches using suicide-related search terms influence the suicide death rate: data from 2004 to 2009 in Japan. Psychiatry Clin Neurosci. 2011;65:392–394. doi: 10.1111/j.1440-1819.2011.02216.x. PubMed DOI
Yang AC, Tsa S-J, Huang NE, Peng C-K. Association of Internet search trends with suicide death in Taipei City, Taiwan, 2004-2009. J Affect Disord. 2011;132:179–184. doi: 10.1016/j.jad.2011.01.019. PubMed DOI
Hagihara A, Miyazaki S, Abe T. Internet suicide searches and the incidence of suicide in young people in Japan. Eur Arch Psychiatry Clin Neurosci. 2012;262:39–46. doi: 10.1007/s00406-011-0212-8. PubMed DOI
Gun JF, III, Lester D. Using Google searches on the Internet to monitor suicidal behavior. J Affect Disord. 2013;148:411–412. doi: 10.1016/j.jad.2012.11.004. PubMed DOI
Almon S. The distributed lag model between capital appropriations and expenditures. Econometrica. 1965;33:178–196. doi: 10.2307/1911894. DOI
Ramsey J. Tests for specification errors in classical linear least squares regression analysis. J R Stat Soc B. 1969;31:350–371.
Engle R. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica. 1982;50:987–1007. doi: 10.2307/1912773. DOI
Arellano M. Computing robust standard errors for withing-group estimators. Oxf Bull Econ Stat. 1987;49:431–434. doi: 10.1111/j.1468-0084.1987.mp49004006.x. DOI
Jarque C, Bera A. Efficient tests for normality, homoskedasticity and serial independence of regression residuals. Econ Lett. 1980;6:255–259. doi: 10.1016/0165-1765(80)90024-5. DOI
Barnard G. Control charts and stochastic processes. J R Stat Soc B. 1959;21:239–271.
Dickey D, Fuller W. Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc. 1979;74:427–431.
Kwiatkowski D, Phillips P, Schmidt P, Shin Y. Testing the null of stationarity against alternative of a unit root: how sure are we that the economic time series have a unit root? J Econom. 1992;54:159–178. doi: 10.1016/0304-4076(92)90104-Y. DOI
Engle R, Granger C. Co-integration and error correction: representation, estimation and testing. Econometrica. 1987;55:251–276. doi: 10.2307/1913236. DOI
West K. Asymptotic normality, when regressors have a unit root. Econometrica. 1988;56:1397–1417. doi: 10.2307/1913104. DOI