Bis-Rhodamine B System as a Tin Detector or Molecular Electronics Device

. 2020 Apr 28 ; 5 (16) : 9324-9333. [epub] 20200417

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32363283

In this report, fluorescent systems consisting of two Rhodamine B moieties were designed and synthesized employing the solid-phase synthetic approach. The compounds were tested for their chemosensing behavior upon the addition of various metal ions over UV-vis absorption and fluorescence spectra. Two probes, 1 and 3, exhibited the best affinity to Sn(IV) ions, resulting in strong fluorescence as well as absorbance enhancement with the low detection limits (2.78 and 2.56 μM, respectively). Compound 3 having two excitations as well as emission maxima was used for the construction of the light dimmer with the alarm for detection of too low pH. The system is operated by a change of pH and can be used as a molecular electronic device.

Zobrazit více v PubMed

Cui P.; Jiang X.; Sun J.; Zhang Q.; Gao F. A water-soluble rhodamine B-derived fluorescent probe for pH monitoring and imaging in acidic regions. Methods Appl. Fluoresc. 2017, 5, 02400910.1088/2050-6120/aa69c7. PubMed DOI

Kierat R. M.; Thaler B. M. B.; Krämer R. A fluorescent redox sensor with tuneable oxidation potential. Bioorg. Med. Chem. Lett. 2010, 20, 1457–1459. 10.1016/j.bmcl.2009.03.171. PubMed DOI

Chen X.; Pradhan T.; Wang F.; Kim J. S.; Yoon J. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev. 2012, 112, 1910–1956. 10.1021/cr200201z. PubMed DOI

Jeong J. W.; Rao B. A.; Son Y.-A. Rhodamine-chloronicotinaldehyde-based ″OFF-ON″ chemosensor for the colorimetric and fluorescent determination of Al3+ ions. Sens. Actuators, B 2015, 208, 75–84. 10.1016/j.snb.2014.11.002. DOI

Zhou X.; Wu X.; Yoon J. A dual FRET based fluorescent probe as a multiple logic system. Chem. Commun. 2015, 51, 111–113. 10.1039/C4CC08245A. PubMed DOI

Kou S.; Lee H. N.; van Noort D.; Swamy K. M. K.; Kim S. H.; Soh J. H.; Lee K.-M.; Nam S.-W.; Yoon J.; Park S. Fluorescent molecular logic gates using microfluidic devices. Angew. Chem., Int. Ed. 2008, 47, 872–876. 10.1002/anie.200703813. PubMed DOI

Kim H.-S.; Angupillai S.; Son Y.-A. A dual chemosensor for both Cu2+ and Al3+: A potential Cu2+ and Al3+ switched YES logic function with an INHIBIT logic gate and a novel solid sensor for detection and extraction of Al3+ ions from aqueous solution. Sens. Actuators, B 2016, 222, 447–458. 10.1016/j.snb.2015.08.001. DOI

Yan F.; Zheng T.; Guo S.; Shi D.; Han Z.; Zhou S.; Chen L. New fluorescence probe for Fe3+ with bis-rhodamine and its application as a molecular logic gate. Spectrochim. Acta, Part A 2015, 151, 881–887. 10.1016/j.saa.2015.07.033. PubMed DOI

Weerasinghe A. J.; Schmiesing C.; Varaganti S.; Ramakrishna G.; Sinn E. Single- and multiphoton turn-on fluorescent Fe3+ sensors based on bis(rhodamine). J. Phys. Chem. B 2010, 114, 9413–9419. 10.1021/jp1034568. PubMed DOI

Chen X.; Hong H.; Han R.; Zhang D.; Ye Y.; Zhao Y.-f. A New bis(rhodamine)-Based Fluorescent Chemosensor for Fe3+. J. Fluoresc. 2012, 22, 789–794. 10.1007/s10895-011-1022-0. PubMed DOI PMC

Chereddy N. R.; Suman K.; Korrapati P. S.; Thennarasu S.; Mandal A. B. Design and synthesis of rhodamine based chemosensors for the detection of Fe3+ ions. Dyes Pigm. 2012, 95, 606–613. 10.1016/j.dyepig.2012.05.025. DOI

Lee S.; Rao B. A.; Son Y.-A. A highly selective fluorescent chemosensor for Hg2+ based on a squaraine-bis(rhodamine-B) derivative: Part II. Sens. Actuators, B 2015, 210, 519–532. 10.1016/j.snb.2015.01.008. DOI

Soh J. H.; Swamy K. M. K.; Kim S. K.; Kim S.; Lee S. H.; Yoon J. Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetrahedron Lett. 2007, 48, 5966–5969. 10.1016/j.tetlet.2007.06.114. DOI

Zhang X.; Huang X.-J.; Zhu Z.-J. A reversible Hg(ii)-selective fluorescent chemosensor based on a thioether linked bis-rhodamine. RSC Adv. 2013, 3, 24891–24895. 10.1039/c3ra43675f. DOI

Han R.; Yang X.; Zhang D.; Fan M.; Ye Y.; Zhao Y. A bis(rhodamine)-based highly sensitive and selective fluorescent chemosensor for Hg(II) in aqueous media. New J. Chem. 2012, 36, 1961–1965. 10.1039/c2nj40638a. DOI

Dong Z.; Tian X.; Chen Y.; Hou J.; Ma J. Rhodamine group modified SBA-15 fluorescent sensor for highly selective detection of Hg2+ and its application as an INHIBIT logic device. RSC Adv. 2013, 3, 2227–2233. 10.1039/C2RA21864J. DOI

Chereddy N. R.; Thennarasu S. Synthesis of a highly selective bis-rhodamine chemosensor for naked-eye detection of Cu2+ ions and its application in bio-imaging. Dyes Pigm. 2011, 91, 378–382. 10.1016/j.dyepig.2011.04.016. DOI

Sun Z.; Li H.; Guo D.; Liu Y.; Tian Z.; Yan S. A novel piperazine-bis(rhodamine-B)-based chemosensor for highly sensitive and selective naked-eye detection of Cu2+ and its application as an INHIBIT logic device. J. Lumin. 2015, 167, 156–162. 10.1016/j.jlumin.2015.06.018. DOI

Brulikova L.; Okorochenkova Y.; Hlavac J. A solid-phase synthetic approach to pH-independent rhodamine-type fluorophores. Org. Biomol. Chem. 2016, 14, 10437–10443. 10.1039/C6OB01772J. PubMed DOI

Brulikova L.; Krupkova S.; Labora M.; Motyka K.; Hradilova L.; Mistrik M.; Bartek J.; Hlavac J. Synthesis and study of novel pH-independent fluorescent mitochondrial labels based on Rhodamine B. RSC Adv. 2016, 6, 23242–23251. 10.1039/C5RA20183G. DOI

López Arbeloa F.; Ruiz Ojeda P.; López Arbeloa I. Fluorescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions. J. Lumin. 1989, 44, 105–112. 10.1016/0022-2313(89)90027-6. DOI

Würth C.; Grabolle M.; Pauli J.; Spieles M.; Resch-Genger U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013, 8, 1535–1550. 10.1038/nprot.2013.087. PubMed DOI

Mahapatra A. K.; Manna S. K.; Mandal D.; Das Mukhopadhyay C. Highly Sensitive and Selective Rhodamine-Based ″Off-On″ Reversible Chemosensor for Tin (Sn4+) and Imaging in Living Cells. Inorg. Chem. 2013, 52, 10825–10834. 10.1021/ic4007026. PubMed DOI

Benesi H. A.; Hildebrand J. H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707. 10.1021/ja01176a030. DOI

Cheng J.; Yang E.; Ding P.; Tang J.; Zhang D.; Zhao Y.; Ye Y. Two rhodamine based chemosensors for Sn4+ and the application in living cells. Sens. Actuators, B 2015, 221, 688–693. 10.1016/j.snb.2015.07.003. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...