Bis-Rhodamine B System as a Tin Detector or Molecular Electronics Device
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32363283
PubMed Central
PMC7191594
DOI
10.1021/acsomega.0c00218
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this report, fluorescent systems consisting of two Rhodamine B moieties were designed and synthesized employing the solid-phase synthetic approach. The compounds were tested for their chemosensing behavior upon the addition of various metal ions over UV-vis absorption and fluorescence spectra. Two probes, 1 and 3, exhibited the best affinity to Sn(IV) ions, resulting in strong fluorescence as well as absorbance enhancement with the low detection limits (2.78 and 2.56 μM, respectively). Compound 3 having two excitations as well as emission maxima was used for the construction of the light dimmer with the alarm for detection of too low pH. The system is operated by a change of pH and can be used as a molecular electronic device.
Zobrazit více v PubMed
Cui P.; Jiang X.; Sun J.; Zhang Q.; Gao F. A water-soluble rhodamine B-derived fluorescent probe for pH monitoring and imaging in acidic regions. Methods Appl. Fluoresc. 2017, 5, 02400910.1088/2050-6120/aa69c7. PubMed DOI
Kierat R. M.; Thaler B. M. B.; Krämer R. A fluorescent redox sensor with tuneable oxidation potential. Bioorg. Med. Chem. Lett. 2010, 20, 1457–1459. 10.1016/j.bmcl.2009.03.171. PubMed DOI
Chen X.; Pradhan T.; Wang F.; Kim J. S.; Yoon J. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev. 2012, 112, 1910–1956. 10.1021/cr200201z. PubMed DOI
Jeong J. W.; Rao B. A.; Son Y.-A. Rhodamine-chloronicotinaldehyde-based ″OFF-ON″ chemosensor for the colorimetric and fluorescent determination of Al3+ ions. Sens. Actuators, B 2015, 208, 75–84. 10.1016/j.snb.2014.11.002. DOI
Zhou X.; Wu X.; Yoon J. A dual FRET based fluorescent probe as a multiple logic system. Chem. Commun. 2015, 51, 111–113. 10.1039/C4CC08245A. PubMed DOI
Kou S.; Lee H. N.; van Noort D.; Swamy K. M. K.; Kim S. H.; Soh J. H.; Lee K.-M.; Nam S.-W.; Yoon J.; Park S. Fluorescent molecular logic gates using microfluidic devices. Angew. Chem., Int. Ed. 2008, 47, 872–876. 10.1002/anie.200703813. PubMed DOI
Kim H.-S.; Angupillai S.; Son Y.-A. A dual chemosensor for both Cu2+ and Al3+: A potential Cu2+ and Al3+ switched YES logic function with an INHIBIT logic gate and a novel solid sensor for detection and extraction of Al3+ ions from aqueous solution. Sens. Actuators, B 2016, 222, 447–458. 10.1016/j.snb.2015.08.001. DOI
Yan F.; Zheng T.; Guo S.; Shi D.; Han Z.; Zhou S.; Chen L. New fluorescence probe for Fe3+ with bis-rhodamine and its application as a molecular logic gate. Spectrochim. Acta, Part A 2015, 151, 881–887. 10.1016/j.saa.2015.07.033. PubMed DOI
Weerasinghe A. J.; Schmiesing C.; Varaganti S.; Ramakrishna G.; Sinn E. Single- and multiphoton turn-on fluorescent Fe3+ sensors based on bis(rhodamine). J. Phys. Chem. B 2010, 114, 9413–9419. 10.1021/jp1034568. PubMed DOI
Chen X.; Hong H.; Han R.; Zhang D.; Ye Y.; Zhao Y.-f. A New bis(rhodamine)-Based Fluorescent Chemosensor for Fe3+. J. Fluoresc. 2012, 22, 789–794. 10.1007/s10895-011-1022-0. PubMed DOI PMC
Chereddy N. R.; Suman K.; Korrapati P. S.; Thennarasu S.; Mandal A. B. Design and synthesis of rhodamine based chemosensors for the detection of Fe3+ ions. Dyes Pigm. 2012, 95, 606–613. 10.1016/j.dyepig.2012.05.025. DOI
Lee S.; Rao B. A.; Son Y.-A. A highly selective fluorescent chemosensor for Hg2+ based on a squaraine-bis(rhodamine-B) derivative: Part II. Sens. Actuators, B 2015, 210, 519–532. 10.1016/j.snb.2015.01.008. DOI
Soh J. H.; Swamy K. M. K.; Kim S. K.; Kim S.; Lee S. H.; Yoon J. Rhodamine urea derivatives as fluorescent chemosensors for Hg2+. Tetrahedron Lett. 2007, 48, 5966–5969. 10.1016/j.tetlet.2007.06.114. DOI
Zhang X.; Huang X.-J.; Zhu Z.-J. A reversible Hg(ii)-selective fluorescent chemosensor based on a thioether linked bis-rhodamine. RSC Adv. 2013, 3, 24891–24895. 10.1039/c3ra43675f. DOI
Han R.; Yang X.; Zhang D.; Fan M.; Ye Y.; Zhao Y. A bis(rhodamine)-based highly sensitive and selective fluorescent chemosensor for Hg(II) in aqueous media. New J. Chem. 2012, 36, 1961–1965. 10.1039/c2nj40638a. DOI
Dong Z.; Tian X.; Chen Y.; Hou J.; Ma J. Rhodamine group modified SBA-15 fluorescent sensor for highly selective detection of Hg2+ and its application as an INHIBIT logic device. RSC Adv. 2013, 3, 2227–2233. 10.1039/C2RA21864J. DOI
Chereddy N. R.; Thennarasu S. Synthesis of a highly selective bis-rhodamine chemosensor for naked-eye detection of Cu2+ ions and its application in bio-imaging. Dyes Pigm. 2011, 91, 378–382. 10.1016/j.dyepig.2011.04.016. DOI
Sun Z.; Li H.; Guo D.; Liu Y.; Tian Z.; Yan S. A novel piperazine-bis(rhodamine-B)-based chemosensor for highly sensitive and selective naked-eye detection of Cu2+ and its application as an INHIBIT logic device. J. Lumin. 2015, 167, 156–162. 10.1016/j.jlumin.2015.06.018. DOI
Brulikova L.; Okorochenkova Y.; Hlavac J. A solid-phase synthetic approach to pH-independent rhodamine-type fluorophores. Org. Biomol. Chem. 2016, 14, 10437–10443. 10.1039/C6OB01772J. PubMed DOI
Brulikova L.; Krupkova S.; Labora M.; Motyka K.; Hradilova L.; Mistrik M.; Bartek J.; Hlavac J. Synthesis and study of novel pH-independent fluorescent mitochondrial labels based on Rhodamine B. RSC Adv. 2016, 6, 23242–23251. 10.1039/C5RA20183G. DOI
López Arbeloa F.; Ruiz Ojeda P.; López Arbeloa I. Fluorescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions. J. Lumin. 1989, 44, 105–112. 10.1016/0022-2313(89)90027-6. DOI
Würth C.; Grabolle M.; Pauli J.; Spieles M.; Resch-Genger U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013, 8, 1535–1550. 10.1038/nprot.2013.087. PubMed DOI
Mahapatra A. K.; Manna S. K.; Mandal D.; Das Mukhopadhyay C. Highly Sensitive and Selective Rhodamine-Based ″Off-On″ Reversible Chemosensor for Tin (Sn4+) and Imaging in Living Cells. Inorg. Chem. 2013, 52, 10825–10834. 10.1021/ic4007026. PubMed DOI
Benesi H. A.; Hildebrand J. H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707. 10.1021/ja01176a030. DOI
Cheng J.; Yang E.; Ding P.; Tang J.; Zhang D.; Zhao Y.; Ye Y. Two rhodamine based chemosensors for Sn4+ and the application in living cells. Sens. Actuators, B 2015, 221, 688–693. 10.1016/j.snb.2015.07.003. DOI