Naphyrone (naphthylpyrovalerone): Pharmacokinetics, behavioural effects and thermoregulation in Wistar rats

. 2021 Mar ; 26 (2) : e12906. [epub] 20200507

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32378298

Naphthylpyrovalerone (naphyrone) is a pyrovalerone cathinone that potently inhibits monoamine transporters and provides stimulatory-entactogenic effects. Little is known about the safety of naphyrone or its effects in vivo, and more research is needed to acquire knowledge about its fundamental effects on physiology and behaviour. Our objective was to investigate naphyrone's pharmacokinetics, acute toxicity, hyperthermic potential and stimulatory and psychotomimetic properties in vivo in male Wistar rats. Pharmacokinetics after 1 mg/kg subcutaneous (sc.) naphyrone were measured over 6 h in serum, the brain, liver and lungs. Rectal temperature (degree Celsius) was measured over 10 h in group-versus individually housed rats after 20 mg/kg sc. In the behavioural experiments, 5, 10 or 20 mg/kg of naphyrone was administered 15 or 60 min prior to testing. Stimulation was assessed in the open field, and sensorimotor processing in a prepulse inhibition (PPI) task. Peak concentrations of naphyrone in serum and tissue were reached at 30 min, with a long-lasting elevation in the brain/serum ratio, consistent with observations of lasting hyperlocomotion in the open field and modest increases in body temperature. Administration of 20 mg/kg transiently enhanced PPI. Naphyrone crosses the blood-brain barrier rapidly and is eliminated slowly, and its long-lasting effects correspond to its pharmacokinetics. No specific signs of acute toxicity were observed; therefore, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.

Zobrazit více v PubMed

Brandt SD, Freeman S, Sumnall HR, Measham F, Cole J. Analysis of NRG ‘legal highs’ in the UK: identification and formation of novel cathinones. Drug Test Anal. 2011;3(9):569-575.

EMCDDA. European Drug Report 2017: Trends and Developments. Luxembourg: Publications Office of the European Union; 2017.

TripSit. Factsheets. 2017; http://drugs.tripsit.me/. Accessed 24/05, 2018.

Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A. Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol. 2013;85(12):1803-1815.

Iversen L, Gibbons S, Treble R, Setola V, Huang XP, Roth BL. Neurochemical profiles of some novel psychoactive substances. Eur J Pharmacol. 2013;700(1-3):147-151.

Meltzer PC, Butler D, Deschamps JR, Madras BK. 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem. 2006;49:1420-1432.

Simmler LD, Buser TA, Donzelli M, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol. 2013;168(2):458-470.

Liechti M. Novel psychoactive substances (designer drugs): overview and pharmacology of modulators of monoamine signaling. Swiss Med Wkly. 2015;145:1-12.

Rickli A, Hoener MC, Liechti ME. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol. 2015;25(3):365-376.

Gannon BM, Fantegrossi WE. Cocaine-like discriminative stimulus effects of mephedrone and naphyrone in mice. J Drug Alcohol Res. 2016;5:1-5.

Horsley RR, Lhotkova E, Hajkova K, et al. Behavioural, pharmacokinetic, metabolic, and hyperthermic profile of 3,4-methylenedioxypyrovalerone (MDPV) in the Wistar rat. Front Psych. 2018;9(144):1-14.

Assi S, Gulyamova N, Kneller P, Osselton D. The effects and toxicity of cathinones from the users' perspectives: a qualitative study. Hum Psychopharmacol. 2017;32(3):e2610:1-7.

Derungs A, Schietzel S, Meyer MR, Maurer HH, Krahenbuhl S, Liechti ME. Sympathomimetic toxicity in a case of analytically confirmed recreational use of naphyrone (naphthylpyrovalerone). Clin Toxicol (Phila). 2011;49:691-693.

Jebadurai J, Schifano F, Deluca P. Recreational use of 1-(2-naphthyl)-2-(1-pyrrolidinyl)-1-pentanone hydrochloride (NRG-1), 6-(2-aminopropyl) benzofuran (Benzofury/6-APB) and NRG-2 with review of available evidence-based literature. Human Psychopharmacol-Clin Exp. 2013;28(4):356-364.

Fantegrossi WE, Gannon BM, Zimmerman SM, Rice KC. In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology. 2013;38(4):563-573.

Gannon BM, Galindo KI, Rice KC, Collins GT. Individual differences in the relative reinforcing effects of 3,4-methylenedioxypyrovalerone under fixed and progressive ratio schedules of reinforcement in rats. J Pharmacol Exp Ther. 2017;361(1):181-189.

Kiyatkin EA, Ren SE. MDMA, methylone, and MDPV: drug-induced brain hyperthermia and its modulation by activity state and environment. Curr Top Behav Neurosci. 2017;32:183-207.

Stille G, Ackermann H, Eichenberger H, Lauener H. Vergleiehende pharmakologische untersuching eines sentralem stimulans 1-p-tolyl-1-oxo-2-pyrrolidino-n-pentan-HCl. Arzneimittle-Forsch. 1963;13:871-877.

Vaugeois J-M, Bonnet J-J, Duterte-Boucher D, Costentin J. In vivo occupancy of the striatal dopamine uptake complex by various inhibitors does not predict their effects on locomotion. Eur J Pharmacol. 1993;230:195-201.

Anizan S, Concheiro M, Lehner KR, et al. Linear pharmacokinetics of 3,4-methylenedioxypyrovalerone (MDPV) and its metabolites in the rat: relationship to pharmacodynamic effects. Addict Biol. 2016;21(2):339-347.

Moreno-Rius J, Pubill Sánchez D, Escubedo Rafa E, Camarasa Garcia J, Miquel M. Locomotor activating effects and addiction-like features of MDPV as assessed in preclinical studies: a review. Agora de Salut. 2017;4:239-246.

Novellas J, Lopez-Arnau R, Carbo ML, Pubill D, Camarasa J, Escubedo E. Concentrations of MDPV in rat striatum correlate with the psychostimulant effect. J Psychopharmacol. 2015;29(11):1209-1218.

Gatch MB, Taylor CM, Forster MJ. Locomotor stimulant and discriminative stimulus effects of ‘bath salt’ cathinones. Behav Pharmacol. 2013;24(5-6):437-447.

Swerdlow NR, Geyer MA. Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull. 1998;24(2):285-301.

Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl). 2001;156(2-3):117-154.

Palenicek T, Lhotkova E, Zidkova M, et al. Emerging toxicity of 5,6-methylenedioxy-2-aminoindane (MDAI): pharmacokinetics, behaviour, thermoregulation and LD50 in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:49-59.

Palenicek T, Votava M, Bubenikova V, Horacek J. Increased sensitivity to the acute effects of MDMA (“ecstasy”) in female rats. Physiol Behav. 2005;86(4):546-553.

Sichova K, Pinterova N, Zidkova M, et al. Mephedrone (4-methylmethcathinone): acute behavioral effects, hyperthermic, and pharmacokinetic profile in rats. Front Psych. 2017;8(306):1-11.

Štefková K, Židková M, Horsley RR, et al. Pharmacokinetic, ambulatory, and hyperthermic effects of 3,4-methylenedioxy-N-methylcathinone (methylone) in rats. Front Psych. 2017;8(232):1-11.

Horsley RR, Lhotkova E, Hajkova K, Jurasek B, Kuchar M, Palenicek T. Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue-behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Res Bull. 2016;126(Pt 1):102-110.

Uttl L, Szczurowska E, Hajkova K, et al. Behavioral and pharmacokinetic profile of indole-derived synthetic cannabinoids JWH-073 and JWH-210 as compared to the phytocannabinoid delta(9)-THC in rats. Front Neurosci. 2018;12(703):1-10.

Upton RN, Doolette DJ. Kinetic aspects of drug disposition in the lungs. Clin Exp Pharmacol Physiol. 1999;26(5-6):381-391.

Aarde SM, Huang PK, Creehan KM, Dickerson TJ, Taffe MA. The novel recreational drug 3,4-methylenedioxypyrovalerone (MDPV) is a potent psychomotor stimulant: self-administration and locomotor activity in rats. Neuropharmacology. 2013;71:130-140.

Baumann MH, Partilla JS, Lehner KR, et al. Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology. 2013;38(4):552-562.

Huang PK, Aarde SM, Angrish D, Houseknecht KL, Dickerson TJ, Taffe MA. Contrasting effects of d-methamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxypyrovalerone, and 4-methylmethcathinone on wheel activity in rats. Drug Alcohol Depend. 2012;126(1-2):168-175.

Baumann MH, Bukhari MO, Lehner KR, et al. Neuropharmacology of 3,4-methylenedioxypyrovalerone (MDPV), its metabolites, and related analogs. Curr Top Behav Neurosci. 2017;32:93-117.

Anizan S, Ellefsen K, Concheiro M, et al. 3,4-Methylenedioxypyrovalerone (MDPV) and metabolites quantification in human and rat plasma by liquid chromatography-high resolution mass spectrometry. Anal Chim Acta. 2014;827:54-63.

Kuczenski R, Segal D, Aizenstein M. Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics. J Neurosci. 1991;11(9):2703-2712.

Hadamitzky M, Markou A, Kuczenski R. Extended access to methamphetamine self-administration affects sensorimotor gating in rats. Behav Brain Res. 2011;217(2):386-390.

Shortall SE, Macerola AE, Swaby RT, et al. Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur Neuropsychopharmacol. 2013;23(9):1085-1095.

Swerdlow NR, Mansbach RS, Geyer MA, Pulvirenti L, Koob GF, Braff DL. Amphetamine disruption of prepulse inhibition of acoustic startle is reversed by depletion of mesolimbic dopamine. Psychopharmacology (Berl). 1990;100:413-416.

Spencer RC, Devilbiss DM, Berridge CW. The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex. Biol Psychiatry. 2015;77(11):940-950.

Dulawa SC, Scearce-Levie KA, Hen R, Geyer MA. Serotonin releasers increase prepulse inhibition in serotonin 1B knockout mice. Psychopharmacology (Berl). 2000;149(3):306-312.

Bubenikova V, Votava M, Horacek J, Palenicek T. Relation of sex and estrous phase to deficits in prepulse inhibition of the startle response induced by ecstasy (MDMA). Behav Pharmacol. 2005;16(2):127-130.

Liechti ME, Geyer MA, Hell D, Vollenweider FX. Effects of MDMA (ecstasy) on prepulse inhibition and habituation of startle in humans after pretreatment with citalopram, haloperidol, or ketanserin. Neuropsychopharmacology. 2001;24(3):240-252.

Palenicek T, Balikova M, Rohanova M, et al. Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats. Pharmacol Biochem Behav. 2011;98(1):130-139.

Roth BL. Drugs and valvular heart disease. New Engl J Med. 2007;356(1):6-9.

Zhou X, Luethi D, Sanvee GM, Bouitbir J, Liechti ME, Krahenbuhl S. Molecular toxicological mechanisms of synthetic cathinones on C2C12 myoblasts. Int J Mol Sci. 2019;20(7):1-12.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...