13q12.2 deletions in acute lymphoblastic leukemia lead to upregulation of FLT3 through enhancer hijacking
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32384149
PubMed Central
PMC7498303
DOI
10.1182/blood.2019004684
PII: S0006-4971(20)61778-5
Knihovny.cz E-resources
- MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma genetics MeSH
- Cell Line MeSH
- Chromosome Deletion MeSH
- Chromosome Disorders complications genetics MeSH
- Polymorphism, Single Nucleotide MeSH
- Cohort Studies MeSH
- Humans MeSH
- Chromosomes, Human, Pair 13 genetics MeSH
- Microarray Analysis MeSH
- Gene Expression Regulation, Leukemic MeSH
- Chromatin Assembly and Disassembly genetics physiology MeSH
- Whole Genome Sequencing MeSH
- RNA-Seq MeSH
- fms-Like Tyrosine Kinase 3 genetics MeSH
- Up-Regulation genetics MeSH
- DNA Copy Number Variations genetics MeSH
- Enhancer Elements, Genetic genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- FLT3 protein, human MeSH Browser
- fms-Like Tyrosine Kinase 3 MeSH
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene in 13q12.2 are among the most common driver events in acute leukemia, leading to increased cell proliferation and survival through activation of the phosphatidylinositol 3-kinase/AKT-, RAS/MAPK-, and STAT5-signaling pathways. In this study, we examine the pathogenetic impact of somatic hemizygous 13q12.2 microdeletions in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) using 5 different patient cohorts (in total including 1418 cases). The 13q12.2 deletions occur immediately 5' of FLT3 and involve the PAN3 locus. By detailed analysis of the 13q12.2 segment, we show that the deletions lead to loss of a topologically associating domain border and an enhancer of FLT3. This results in increased cis interactions between the FLT3 promoter and another enhancer located distally to the deletion breakpoints, with subsequent allele-specific upregulation of FLT3 expression, expected to lead to ligand-independent activation of the receptor and downstream signaling. The 13q12.2 deletions are highly enriched in the high-hyperdiploid BCP ALL subtype (frequency 3.9% vs 0.5% in other BCP ALL) and in cases that subsequently relapsed. Taken together, our study describes a novel mechanism of FLT3 involvement in leukemogenesis by upregulation via chromatin remodeling and enhancer hijacking. These data further emphasize the role of FLT3 as a driver gene in BCP ALL.
Childhood Leukaemia Investigation Prague Prague Czech Republic
Department of Clinical and Experimental Medicine Linköping University Linköping Sweden
Division of Clinical Genetics Department of Laboratory Medicine Lund University Lund Sweden
Laboratory of Hematology Centre Hospitalier Universitaire Lille Lille France
Unité Mixte de Recherche en Santé 1172 INSERM University of Lille Lille France
See more in PubMed
Annesley CE, Brown P. The biology and targeting of FLT3 in pediatric leukemia. Front Oncol. 2014;4:263. PubMed PMC
Armstrong SA, Mabon ME, Silverman LB, et al. . FLT3 mutations in childhood acute lymphoblastic leukemia. Blood. 2004;103(9):3544-3546. PubMed
Yang M, Vesterlund M, Siavelis I, et al. . Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat Commun. 2019;10(1):1519. PubMed PMC
Paulsson K, Lilljebjörn H, Biloglav A, et al. . The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet. 2015;47(6):672-676. PubMed
Olsson L, Castor A, Behrendtz M, et al. . Deletions of IKZF1 and SPRED1 are associated with poor prognosis in a population-based series of pediatric B-cell precursor acute lymphoblastic leukemia diagnosed between 1992 and 2011. Leukemia. 2014;28(2):302-310. PubMed
Panagopoulos I, Gorunova L, Andersen HK, et al. . PAN3-PSMA2 fusion resulting from a novel t(7;13)(p14;q12) chromosome translocation in a myelodysplastic syndrome that evolved into acute myeloid leukemia. Exp Hematol Oncol. 2018;7:7. PubMed PMC
Olsson L, Lundin-Ström KB, Castor A, et al. . Improved cytogenetic characterization and risk stratification of pediatric acute lymphoblastic leukemia using single nucleotide polymorphism array analysis: A single center experience of 296 cases. Genes Chromosomes Cancer. 2018;57(11):604-607. PubMed
Duployez N, Abou Chahla W, Lejeune S, et al. . Detection of a new heterozygous germline ETV6 mutation in a case with hyperdiploid acute lymphoblastic leukemia. Eur J Haematol. 2018;100(1):104-107. PubMed
Zaliova M, Hovorkova L, Vaskova M, Hrusak O, Stary J, Zuna J. Slower early response to treatment and distinct expression profile of childhood high hyperdiploid acute lymphoblastic leukaemia with DNA index < 1.16. Genes Chromosomes Cancer. 2016;55(9):727-737. PubMed
Wang K, Li M, Hadley D, et al. . PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17(11):1665-1674. PubMed PMC
Rasmussen M, Sundström M, Göransson Kultima H, et al. . Allele-specific copy number analysis of tumor samples with aneuploidy and tumor heterogeneity. Genome Biol. 2011;12(10):R108. PubMed PMC
DePristo MA, Banks E, Poplin R, et al. . A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491-498. PubMed PMC
Thomas GWC, Wang RJ, Puri A, et al. . Reproductive longevity predicts mutation rates in primates. Curr Biol. 2018;28(19):3193-3197.e5. PubMed PMC
Cibulskis K, Lawrence MS, Carter SL, et al. . Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213-219. PubMed PMC
Chen X, Schulz-Trieglaff O, Shaw R, et al. . Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220-1222. PubMed
Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28(18):i333-i339. PubMed PMC
Wala JA, Bandopadhayay P, Greenwald NF, et al. . SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. 2018;28(4):581-591. PubMed PMC
Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLOS Comput Biol. 2016;12(4):e1004873. PubMed PMC
Cingolani P, Platts A, Wang L, et al. . A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80-92. PubMed PMC
Kiyoi H, Naoe T, Nakano Y, et al. . Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93(9):3074-3080. PubMed
Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, et al. . Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016;7:11790. PubMed PMC
Dobin A, Davis CA, Schlesinger F, et al. . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. PubMed PMC
van de Geijn B, McVicker G, Gilad Y, Pritchard JK. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat Methods. 2015;12(11):1061-1063. PubMed PMC
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. PubMed PMC
McCarthy S, Das S, Kretzschmar W, et al. ; Haplotype Reference Consortium . A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279-1283. PubMed PMC
Okuyama K, Strid T, Kuruvilla J, et al. . PAX5 is part of a functional transcription factor network targeted in lymphoid leukemia. PLoS Genet. 2019;15(8):e1008280. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. PubMed PMC
Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42(Web Server issue):W187-W191. PubMed PMC
van Heeringen SJ, Veenstra GJ. GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments. Bioinformatics. 2011;27(2):270-271. PubMed PMC
Weirauch MT, Yang A, Albu M, et al. . Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158(6):1431-1443. PubMed PMC
Heinz S, Benner C, Spann N, et al. . Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576-589. PubMed PMC
Fornes O, Castro-Mondragon JA, Khan A, et al. . JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48(D1):D87-D92. PubMed PMC
Durand NC, Shamim MS, Machol I, et al. . Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3(1):95-98. PubMed PMC
Wu HJ, Michor F. A computational strategy to adjust for copy number in tumor Hi-C data. Bioinformatics. 2016;32(24):3695-3701. PubMed PMC
Stansfield JC, Cresswell KG, Dozmorov MG. multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments. Bioinformatics. 2019;35(17):2916-2923. PubMed PMC
Crane E, Bian Q, McCord RP, et al. . Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature. 2015;523(7559):240-244. PubMed PMC
Wolf J, Passmore LA. mRNA deadenylation by Pan2-Pan3. Biochem Soc Trans. 2014;42(1):184-187. PubMed PMC
Weischenfeldt J, Dubash T, Drainas AP, et al. . Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat Genet. 2017;49(1):65-74. PubMed PMC
Hnisz D, Weintraub AS, Day DS, et al. . Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 2016;351(6280):1454-1458. PubMed PMC
Ooi WF, Nargund AM, Lim KJ, et al. . Integrated paired-end enhancer profiling and whole-genome sequencing reveals recurrent CCNE1 and IGF2 enhancer hijacking in primary gastric adenocarcinoma. Gut. 2020;69(6):1039-1052. PubMed
Stam RW, den Boer ML, Schneider P, et al. . Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood. 2005;106(7):2484-2490. PubMed
Ozeki K, Kiyoi H, Hirose Y, et al. . Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood. 2004;103(5):1901-1908. PubMed
Kang H, Wilson CS, Harvey RC, et al. . Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2012;119(8):1872-1881. PubMed PMC
Garza-Veloz I, Martinez-Fierro ML, Jaime-Perez JC, et al. . Identification of differentially expressed genes associated with prognosis of B acute lymphoblastic leukemia. Dis Markers. 2015;2015:828145. PubMed PMC
Kuchenbauer F, Kern W, Schoch C, et al. . Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematologica. 2005;90(12):1617-1625. PubMed
Paulsson K, Horvat A, Strömbeck B, et al. . Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2008;47(1):26-33. PubMed
Li Y, Schwab C, Ryan S, et al. . Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature. 2014;508(7494):98-102. PubMed PMC
Yamamoto JF, Goodman MT. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997-2002. Cancer Causes Control. 2008;19(4):379-390. PubMed
Paulsson K, Johansson B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2009;48(8):637-660. PubMed