Chemical cues of an invasive turtle reduce development time and size at metamorphosis in the common frog

. 2020 May 14 ; 10 (1) : 7978. [epub] 20200514

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32409709
Odkazy

PubMed 32409709
PubMed Central PMC7224366
DOI 10.1038/s41598-020-64899-0
PII: 10.1038/s41598-020-64899-0
Knihovny.cz E-zdroje

In aquatic systems, chemical cues are one of the major sources of information through which animals can assess local predation risk. Non-native red-eared sliders (Trachemys scripta elegans) have the potential to disrupt aquatic ecosystems in Central Europe because of their superior competitive abilities and omnivorous diets. In this study, we examined whether continuous predator-borne cues are tied to changes in the developmental rates, growth rates and sizes at metamorphosis of common frog tadpoles (Rana temporaria). Our results show rather rarely documented types of amphibian prey responses to caged predators. The presence of turtles shortened the time at metamorphosis of tadpoles from 110 ± 11.7 days to 93 ± 13.0 days (mean ± S.D.). The first metamorphosed individuals were recorded on the 65th day and on the 80th day from hatching in the predator treatment and in the control group, respectively. The froglets were significantly smaller (12.8 ± 0.99 mm) in the presence of the predator than in the control treatment (15.2 ± 1.27 mm). The growth rate trajectories were similar between the predator treatment and the control. Thus, predator-induced tadpole defences were evident in higher developmental rates and smaller sizes at metamorphosis without significant changes in growth.

Zobrazit více v PubMed

Levine JM, D’Antonio CM. Forecasting biological invasions with increasing international trade. Conserv. Biol. 2003;17:322–326. doi: 10.1046/j.1523-1739.2003.02038.x. DOI

Simberloff D, et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 2013;28:58–66. doi: 10.1016/j.tree.2012.07.013. PubMed DOI

Pimentel, D. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. (CRC Press, 2014).

Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion ecology. (John Wiley & Sons, 2013).

Pimentel D, Zuniga R, Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005;52:273–288. doi: 10.1016/j.ecolecon.2004.10.002. DOI

Pimentel D, Lach L, Zuniga R, Morrison D. Environmental and economic costs of nonindigenous species in the United States. Bioscience. 2000;50:53–66. doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2. DOI

Vilà, M. & Hulme, P. E. Impact of biological invasions on ecosystem services. Vol. 12 (Springer, 2017).

Bucciarelli GM, Blaustein AR, Garcia TS, Kats LB. Invasion complexities: the diverse impacts of nonnative species on amphibians. Copeia. 2014;2014:611–632. doi: 10.1643/OT-14-014. DOI

Nunes AL, et al. A global meta-analysis of the ecological impacts of alien species on native amphibians. Proc. R. Soc. Lond. [Biol.] 2019;286:20182528. doi: 10.1098/rspb.2018.2528. PubMed DOI PMC

Gall BG, Mathis A. Innate predator recognition and the problem of introduced trout. Ethology. 2010;116:47–58. doi: 10.1111/j.1439-0310.2009.01718.x. DOI

Bennett AM, Pereira D, Murray DL. Investment into defensive traits by anuran prey (Lithobates pipiens) is mediated by the starvation-predation risk trade-off. PLoS One. 2013;8:e82344. doi: 10.1371/journal.pone.0082344. PubMed DOI PMC

Cadi A, Joly P. Impact of the introduction of the red-eared slider (Trachemys scripta elegans) on survival rates of the European pond turtle (Emys orbicularis) Biodivers. Conserv. 2004;13:2511–2518. doi: 10.1023/B:BIOC.0000048451.07820.9c. DOI

Pearl CA, Adams MJ, Schuytema GS, Nebeker AV. Behavioral responses of anuran larvae to chemical cues of native and introduced predators in the Pacific Northwestern United States. J. Herpetol. 2003;37:572–577. doi: 10.1670/134-02N. DOI

Lima SL, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 1990;68:619–640. doi: 10.1139/z90-092. DOI

Petranka JW, Kats LB, Sih A. Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Anim. Behav. 1987;35:420–425. doi: 10.1016/S0003-3472(87)80266-X. DOI

Lefcort H, Eiger SM. Antipredatory behaviour of feverish tadpoles: implications for pathogen transmission. Behaviour. 1993;126:13–27. doi: 10.1163/156853993X00317. DOI

Kats LB, Dill LM. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience. 1998;5:361–394. doi: 10.1080/11956860.1998.11682468. DOI

Berec M, Klapka V, Zemek R. Effect of an alien turtle predator on movement activity of European brown frog tadpoles. Ital. J. Zool. 2016;83:68–76. doi: 10.1080/11250003.2016.1139195. DOI

Lenda M, Witek M, Skórka P, Moroń D, Woyciechowski M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions. 2013;15:2403–2414. doi: 10.1007/s10530-013-0461-8. DOI

Robbins TR, Freidenfelds NA, Langkilde T. Native predator eats invasive toxic prey: evidence for increased incidence of consumption rather than aversion-learning. Biol. Invasions. 2013;15:407–415. doi: 10.1007/s10530-012-0295-9. DOI

Márquez-García AZ, Campos-Verduzco R, Castro-Soriano BS. Sedimentología y morfología de la playa de anidación para tortugas marinas, El Carrizal, Coyuca de Benítez, Guerrero. Hidrobiológica. 2010;20:101–112.

Gomez-Mestre I, et al. The shape of things to come: linking developmental plasticity to post‐metamorphic morphology in anurans. J. Evol. Biol. 2010;23:1364–1373. doi: 10.1111/j.1420-9101.2010.02016.x. PubMed DOI

Goldberg T, Nevo E, Degani G. Phenotypic plasticity in larval development of six amphibian species in stressful natural environments. Zool. Stud. 2012;51:345–361.

Van Buskirk J. The costs of an inducible defense in anuran larvae. Ecology. 2000;81:2813–2821. doi: 10.2307/177343. DOI

Bulen BJ, Distel CA. Carbaryl concentration gradients in realistic environments and their influence on our understanding of the tadpole food web. Arch. Env. Contam. Toxicol. 2011;60:343–350. doi: 10.1007/s00244-010-9630-2. PubMed DOI

Nunes A, et al. Antipredator responses of two anurans towards native and exotic predators. Amphibia-Reptilia. 2011;32:341–350. doi: 10.1163/017353711X579849. DOI

Phillips BL, Shine R. An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proc. R. Soc. Lond. [Biol.] 2006;273:1545–1550. doi: 10.1098/rspb.2006.3479. PubMed DOI PMC

Berthon K. How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol. Invasions. 2015;17:2199–2211. doi: 10.1007/s10530-015-0874-7. DOI

Berchtold, A. Behavioural and physiological responses of prey fish to an invasive predator MSc thesis, Simon Fraser University, (2017).

Zhang F, Zhao J, Zhang Y, Messenger K, Wang Y. Antipredator behavioral responses of native and exotic tadpoles to novel predator. Asian Herpetol. Res. 2015;6:51–58.

Werner EE. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am. Nat. 1986;128:319–341. doi: 10.1086/284565. DOI

Relyea RA. Getting out alive: how predators affect the decision to metamorphose. Oecologia. 2007;152:389–400. doi: 10.1007/s00442-007-0675-5. PubMed DOI

Ernst, C. H. & Lovich, J. E. Turtles of the United States and Canada. (JHU Press, 2009).

Works AJ, Olson DH. Diets of two nonnative freshwater turtle species (Trachemys scripta and Pelodiscus sinensis) in Kawai Nui Marsh, Hawaii. J. Herpetol. 2018;52:444–452. doi: 10.1670/17-137. DOI

Ficetola, G. F., Rödder, D. & Padoa-Schioppa, E. In Handbook of global freshwater invasive species (ed. Francis, R.) 331–339 (Earthscan, Taylor and Francis Group, 2012).

Kraus, F. Alien reptiles and amphibians: a scientific compendium and analysis. Vol. 4 (Springer, 2009).

West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 1989;20:249–278. doi: 10.1146/annurev.es.20.110189.001341. DOI

Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica16, 183–190 (1960).

Cox JG, Lima SL. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 2006;21:674–680. doi: 10.1016/j.tree.2006.07.011. PubMed DOI

Banks PB, Dickman CR. Alien predation and the effects of multiple levels of prey naiveté. Trends Ecol. Evol. 2007;5:229–230. doi: 10.1016/j.tree.2007.02.006. PubMed DOI

Hettyey A, et al. Naive tadpoles do not recognize recent invasive predatory fishes as dangerous. Ecology. 2016;97:2975–2985. doi: 10.1002/ecy.1532. PubMed DOI

Sih A, et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos. 2010;119:610–621. doi: 10.1111/j.1600-0706.2009.18039.x. DOI

Ferrari MC, Gonzalo A, Messier F, Chivers DP. Generalization of learned predator recognition: an experimental test and framework for future studies. Proc. R. Soc. Lond. [Biol.] 2007;274:1853–1859. doi: 10.1098/rspb.2007.0297. PubMed DOI PMC

Chalcraft DR, Resetarits WJ., Jr. Predator identity and ecological impacts: functional redundancy or functional diversity? Ecology. 2003;84:2407–2418. doi: 10.1890/02-0550. DOI

Sih A, Englund G, Wooster D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 1998;13:350–355. doi: 10.1016/S0169-5347(98)01437-2. PubMed DOI

Soluk DA, Collins NC. Synergistic interactions between fish and stoneflies: facilitation and interference among stream predators. Oikos. 1988;52:94–100. doi: 10.2307/3565987. DOI

Stearns SC. The evolutionary significance of phenotypic plasticity. Bioscience. 1989;39:436–445. doi: 10.2307/1311135. DOI

Newman RA. Adaptive plasticity in amphibian metamorphosis. Bioscience. 1992;42:671–678. doi: 10.2307/1312173. DOI

Semlitsch RD, Caldwell JP. Effects of density of growth, metamorphosis, and survivorship in tadpoles of Scaphiopus holbrooki. Ecology. 1982;63:905–911. doi: 10.2307/1937230. DOI

Denver RJ. Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm. Behav. 1997;31:169–179. doi: 10.1006/hbeh.1997.1383. PubMed DOI

Wilbur HM, Collins JP. Ecological aspects of amphibian metamorphosis: nonnormal distributions of competitive ability reflect selection for facultative metamorphosis. Science. 1973;182:1305–1314. doi: 10.1126/science.182.4119.1305. PubMed DOI

Kiesecker JM, Chivers DP, Anderson M, Blaustein AR. Effect of predator diet on life history shifts of red-legged frogs, Rana aurora. J. Chem. Ecol. 2002;28:1007–1015. doi: 10.1023/A:1015261801900. PubMed DOI

Laurila A, Kujasalo J, Ranta E. Predator-induced changes in life history in two anuran tadpoles: effects of predator diet. Oikos. 1998;83:307–317. doi: 10.2307/3546842. DOI

Kurzava LM, Morin PJ. Tests of functional equivalence: complementary roles of salamanders and fish in community organization. Ecology. 1998;79:477–489. doi: 10.1890/0012-9658(1998)079[0477:TOFECR]2.0.CO;2. DOI

Laurila A, Kujasalo J. Habitat duration, predation risk and phenotypic plasticity in common frog (Rana temporaria) tadpoles. J. Anim. Ecol. 1999;68:1123–1132. doi: 10.1046/j.1365-2656.1999.00354.x. DOI

Boorse GC, Denver RJ. Acceleration of Ambystoma tigrinum metamorphosis by corticotropin‐releasing hormone. J. Exp. Zool. 2002;293:94–98. doi: 10.1002/jez.10115. PubMed DOI

Ruthsatz K, et al. Endocrine disruption alters developmental energy allocation and performance in Rana temporaria. Integr. Comp. Biol. 2019;59:70–88. doi: 10.1093/icb/icz041. PubMed DOI

Formanowicz DR., Jr. Anuran tadpole/aquatic insect predator-prey interactions: tadpole size and predator capture success. Herpetologica. 1986;42:367–373.

Smith DC. Factors controlling tadpole populations of the chorus frog (Pseudacris triseriata) on Isle Royale, Michigan. Ecology. 1983;64:501–510. doi: 10.2307/1939970. DOI

Bringsøe, H. In Handbuch der Reptilien und Amphibien Europas Vol. 3/IIIA Schildkröten (Testudines) I. (ed. Fritz, U.) 525–583 (Aula, 2001).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...