Aberrant energy metabolism and redox balance in seizure onset zones of epileptic patients

. 2020 Jul 15 ; 223 () : 103812. [epub] 20200511

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid32418907

Grantová podpora
R01 NS085389 NINDS NIH HHS - United States
P20 RR017675 NCRR NIH HHS - United States
P20 GM104320 NIGMS NIH HHS - United States
R01 NS072179 NINDS NIH HHS - United States
R35 GM119770 NIGMS NIH HHS - United States

Odkazy

PubMed 32418907
PubMed Central PMC10588813
DOI 10.1016/j.jprot.2020.103812
PII: S1874-3919(20)30180-9
Knihovny.cz E-zdroje

Epilepsy is a disorder that affects around 1% of the population. Approximately one third of patients do not respond to anti-convulsant drugs treatment. To understand the underlying biological processes involved in drug resistant epilepsy (DRE), a combination of proteomics strategies was used to compare molecular differences and enzymatic activities in tissue implicated in seizure onset to tissue with no abnormal activity within patients. Label free quantitation identified 17 proteins with altered abundance in the seizure onset zone as compared to tissue with normal activity. Assessment of oxidative protein damage by protein carbonylation identified additional 11 proteins with potentially altered function in the seizure onset zone. Pathway analysis revealed that most of the affected proteins are involved in energy metabolism and redox balance. Further, enzymatic assays showed significantly decreased activity of transketolase indicating a disruption of the Pentose Phosphate Pathway and diversion of intermediates into purine metabolic pathway, resulting in the generation of the potentially pro-convulsant metabolites. Altogether, these findings suggest that imbalance in energy metabolism and redox balance, pathways critical to proper neuronal function, play important roles in neuronal network hyperexcitability and can be used as a primary target for potential therapeutic strategies to combat DRE. SIGNIFICANCE: Epileptic seizures are some of the most difficult to treat neurological disorders. Up to 40% of patients with epilepsy are resistant to first- and second-line anticonvulsant therapy, a condition that has been classified as refractory epilepsy. One potential therapy for this patient population is the ketogenic diet (KD), which has been proven effective against multiple refractory seizure types However, compliance with the KD is extremely difficult, and carries severe risks, including ketoacidosis, renal failure, and dangerous electrolyte imbalances. Therefore, identification of pathways disruptions or shortages can potentially uncover cellular targets for anticonvulsants, leading to a personalized treatment approach depending on a patient's individual metabolic signature.

Zobrazit více v PubMed

Epilepsy Across the Spectrum: Promoting Health and Understanding, The National Academies Press, Washington, DC, 2012. PubMed

Lawn N, Chan J, Lee J, Dunne J, Is the first seizure epilepsy and when? Epilepsia 56 (9) (2015) 1425–1431. PubMed

Heron S, Scheffer I, Berkovic S, Dibbens L, Mulley J, Channelopathies in idiopathic epilepsy, Neurotherapeutics 4 (2) (2007) 295–304. PubMed

Berg AT, Identification of pharmacoresistant epilepsy, Neurol. Clin. 27 (4) (2009) 1003–1013. PubMed PMC

Begley CE, Famulari M, Annegers JF, Larirson DR, Reynolds TF, Coan S, Dubinsky S, Newmark ME, Leibson C, So EL, Rocca WA, The cost of epilepsy in the United States: an estimate from population-based clinical and survey data, Epilepsia 41 (3) (2000) 342–351. PubMed

Thhurman DJ, Logroscino G, Beghj E, Hauser WA, Hesdorffer DC, Newton CR, Scorza FA, Sander JW, Tomson T, The burden of premature mortality of epilepsy in high-income countries: a systematic review from the mortality task force of the international league against epilepsy, Epilepsia 58 (1) (2017) 17–26. PubMed PMC

Thurman DJ, Hesdorffer DC, French JA, Sudden unexpected death in epilepsy: assessing the public health burden, Epilepsia 55 (10) (2014) 1479–1485. PubMed

Gao L, Xia L, Pan SQ, Xiong T, Li SC, Burden of epilepsy: a prevalence-based cost of illness study of direct, indirect and intangible costs for epilepsy, Epilepsy Res. 110 (2015) 146–156. PubMed

Mansouri A, Fallah A, Valiante TA, Determining surgical candidacy in temporal lobe epilepsy, Epilepsy Res.Treat. 2012 (2012). PubMed PMC

Kanchanatawan B, Limothai C, Srikijvilaikul T, Maes M, Clinical predictors of 2-year outcome of resective epilepsy surgery in adults with refractory epilepsy: a cohort study, BMJ Open 4 (4) (2014) e004852. PubMed PMC

Chapman K, Wyllie E, Najm I, Ruggieri P, Bingaman W, Luders J, Kotagal P, Lachhwani D, Dinner D, Lüders HO, Seizure outcome after epilepsy surgery in patients with normal preoperative MRI, J. Neurol. Neurosurg. Psychiatry 76 (5) (2005) 710–713. PubMed PMC

Fong JS, Jehi L, Najm I, Prayson RA, Busch R, Bingaman W, Seizure outcome and its predictors after temporal lobe epilepsy surgery in patients with normal MRI, Epilepsia 52 (8) (2011) 1393–1401. PubMed

Holmes MD, Born DE, Kutsy RL, Wilensky AJ, Ojemann GA, Ojemann LM, Outcome after surgery in patients with refractory temporal lobe epilepsy and normal MRI, Seizure 9 (6) (2000) 407–411. PubMed

Walczak T, Surgical treatment of the epilepsies, ed 2. Edited by Engel Jerome Jr, New York, Raven Press, 1993, 786 pp, illustrated, $135.00, Ann. Neurol. 35 (2) (1994) 252.

Meador K, Psychiatry problems after epilepsy surgery, Epilepsy Curr. 5 (1) (2005) 28–29. PubMed PMC

Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH, The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial, Lancet Neurol. 7 (6) (2008) 500–506. PubMed

Georgiadis I, Kapsalaki EZ, Fountas KN, Temporal lobe resective surgery for medically intractable epilepsy: a review of complications and side effects, Epilepsy Res. Treat. 2013 (2013) 12. PubMed PMC

Xiao F, Chen D, Lu Y, Xiao Z, Guan LF, Yuan J, Wang L, Xi ZQ, Wang XF, Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy, Brain Res. 1255 (2009) 180–189. PubMed

Yu W, Chen D, Wang Z, Zhou C, Luo J, Xu Y, Shen L, Yin H, Tao S, Xiao Z, Xiao F, Lu Y, Wang X, Time-dependent decrease of clusterin as a potential cerebrospinal fluid biomarker for drug-resistant epilepsy, J. Mol. Neurosci. 54 (1) (2014) 1–9. PubMed

Mériaux C, Franck J, Park DB, Quanico J, Kim YH, Chung CK, Park YM, Steinbusch H, Salzet M, Fournier I, Human temporal lobe epilepsy analyses by tissue proteomics, Hippocampus 24 (6) (2014) 628–642. PubMed

Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C, Boneschi FM, Choi C, Morozov P, Das K, Teplitskaya E, Yu A, Cayanis E, Penchaszadeh G, Kottmann AH, Pedley TA, Hauser WA, Ottman R, Gilliam TC, Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features, Nat. Genet. 30 (3) (2002) 335–341. PubMed PMC

He S, Wang Q, He J, Pu H, Yang W, Ji J, Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe, Proteomics 6 (18) (2006) 4987–4996. PubMed

Yang JW, Czech T, Yamada J, Csaszar E, Baumgartner C, Slavc I, Lubec G, Aberrant cytosolic acyl-CoA thioester hydrolase in hippocampus of patients with mesial temporal lobe epilepsy, Amino Acids 27 (3–4) (2004) 269–275. PubMed

Yang J-W, Czech T, Gelpi E, Lubec G, Extravasation of plasma proteins can confound interpretation of proteomic studies of brain: a lesson from apo A-I in mesial temporal lobe epilepsy, Mol. Brain Res. 139 (2) (2005) 348–356. PubMed

Lemée J-M, Com E, Clavreul A, Avril T, Quillien V, de Tayrac M, Pineau C, Menei P, Proteomic analysis of glioblastomas: what is the best brain control sample? J. Proteome 85 (2013) 165–173. PubMed

Rowley S, Patel M, Mitochondrial involvement and oxidative stress in temporal lobe epilepsy, Free Radic. Biol. Med. 62 (2013) 121–131. PubMed PMC

Simeone KA, Matthews SA, Samson KK, Simeone TA, Targeting deficiencies in mitochondrial respiratory complex I and functional uncoupling exerts anti-seizure effects in a genetic model of temporal lobe epilepsy and in a model of acute temporal lobe seizures, Exp. Neurol. 251 (2014) 84–90. PubMed PMC

Kim JH, Sedlak M, Gao Q, Riley CP, Regnier FE, Adamec J, Oxidative stress studies in yeast with a frataxin mutant: a proteomics perspective, J. Proteome Res. 9 (2) (2010) 730–736. PubMed

Kim JH, Sedlak M, Gao Q, Riley CP, Regnier FE, Adamec J, Dynamics of protein damage in yeast frataxin mutant exposed to oxidative stress, OMICS 14 (6) (2010) 689–699. PubMed PMC

Boone Cory HT, Grove RA, Adamcova D, Braga CP, Adamec J, Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: an integration of 2D DIGE, quantitative proteomics, and bioinformatics, Proteomics 16 (13) (2016) 1889–1903. PubMed

Liang LP, Ho YS, Patel M, Mitochondrial superoxide production in kainate-induced hippocampal damage, Neuroscience 101 (3) (2000) 563–570. PubMed

Gupta YK, Briyal S, Chaudhary G, Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats, Pharmacol. Biochem. Behav. 71 (1–2) (2002) 245–249. PubMed

Ramos SF, Mendonça BP, Leffa DD, Pacheco R, Damiani AP, Hainzenreder G, Petronilho F, Dal-Pizzol F, Guerrini R, Calo G, Gavioli EC, Boeck CR, de Andrade VM, Effects of neuropeptide S on seizures and oxidative damage induced by pentylenetetrazole in mice, Pharmacol. Biochem. Behav. 103 (2) (2012) 197–203. PubMed

Patsoukis N, Zervoudakis G, Panagopoulos NT, Georgiou CD, Angelatou F, Matsokis NA, Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure, Neurosci. Lett. 357 (2) (2004) 83–86. PubMed

England K, Odriscoll C, Cotter TG, Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis, Cell Death Differ. 11 (3) (2003) 252–260. PubMed

Choi J, Rees HD, Weintraub ST, Levey AI, Chin L-S, Li L, Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with alzheimer and parkinson diseases, J. Biol. Chem. 280 (12) (2005) 11648–11655. PubMed

Doyle K, Fitzpatrick FA, Redox Signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function, J. Biol. Chem. 285 (23) (2010) 17417–17424. PubMed PMC

Ryan K, Backos DS, Reigan P, Patel M, Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis, J. Neurosci. 32 (33) (2012) 11250–11258. PubMed PMC

Suzuki YJ, Carini M, Butterfield DA, Protein carbonylation, Antioxid. Redox Signal. 12 (3) (2010) 323–325. PubMed PMC

Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA, Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71, J. Neurochem. 82 (6) (2002) 1524–1532. PubMed

Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Lucius R, Hildebrand J, Zamboni N, Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells, Mol. Cell 59 (3) (2015) 359–371. PubMed

Stringer JL, Xu K, Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate, Epilepsia 49 (Suppl. 8) (2008) 101–103. PubMed PMC

Yang Y, Lane AN, Ricketts CJ, Sourbier C, Wei M-H, Shuch B, Pike L, Wu M, Rouault TA, Boros LG, Fan TWM, Linehan WM, Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma, PLoS One 8 (8) (2013) e72179. PubMed PMC

Fridman A, Saha A, Chan A, Darren E Casteel, Renate B. Pilz, Gerry R. Boss, Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate, Biochem. J. 454 (1) (2013) 91–99. PubMed

Holtzman D, Meyers R, Khait I, Jensen F, Brain creatine kinase reaction rates and reactant concentrations during seizures in developing rats, Epilepsy Res. 27 (1) (1997) 7–11. PubMed

Eraković V, Župan G, Varljen J, Laginja J, Simonić A, Altered activities of rat brain metabolic enzymes in electroconvulsive shock-induced seizures, Epilepsia 42 (2) (2001) 181–189. PubMed

Jost CR, Van der Zee CEEM, In ‘t Zandt HJA, Oerlemans F, Verheij M, Streijger F, Fransen J, Heerschap A, Cools AR, Wieringa B, Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility, Eur. J. Neurosci. 15 (10) (2002) 1692–1706. PubMed

Streijger F, Scheenen WJJM, Van Luijtelaar G, Oerlemans F, Wieringa B, Van der Zee CEEM, Complete brain-type creatine kinase deficiency in mice blocks seizure activity and affects intracellular calcium kinetics, Epilepsia 51 (1) (2010) 79–88. PubMed

Messina A, Reina S, Guarino F, De Pinto V, VDAC isoforms in mammals, Biochim. Biophys. Acta Biomembr. 1818 (6) (2012) 1466–1476. PubMed

Aggarwal M, Kondeti B, McKenna R, Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: a patent review, Expert Opin. Ther. Pat. 23 (6) (2013) 717–724. PubMed

Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin L-S, Li L, Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase l1 associated with idiopathic Parkinson’s and Alzheimer’s diseases, J. Biol. Chem. 279 (13) (2004) 13256–13264. PubMed

Konya C, Hatanaka Y, Fujiwara Y, Uchida K, Nagai Y, Wada K, Kabuta T, Parkinson’s disease-associated mutations in α-synuclein and UCH-L1 inhibit the unconventional secretion of UCH-L1, Neurochem. Int. 59 (2) (2011) 251–258. PubMed

Osaka H, Wang Y-L, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun Y-J, Sakurai M, Harada T, Hara Y, Kimura I, Chiba S, Namikawa K, Kiyama H, Noda M, Aoki S, Wada K, Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron, Hum. Mol. Genet. 12 (16) (2003) 1945–1958. PubMed

Castro JP, Jung T, Grune T, Almeida H, Actin carbonylation: from cell dysfunction to organism disorder, J. Proteome 92 (2013) 171–180. PubMed

Zeng L-H, Xu L, Rensing NR, Sinatra PM, Rothman SM, Wong M, Kainate seizures cause acute dendritic injury and actin depolymerization in vivo, J. Neurosci. 27 (43) (2007) 11604–11613. PubMed PMC

Wong M, Stabilizing dendritic stucture as a novel therapeutic approach for epilepsy, Expert. Rev. Neurother. 8 (6) (2008) 907–915. PubMed PMC

Sbai O, Khrestchatisky M, Esclapez M, Ferhat L, Drebrin a expression is altered after pilocarpine-induced seizures: time course of changes is consistent for a role in the integrity and stability of dendritic spines of hippocampal granule cells, Hippocampus 22 (3) (2012) 477–493. PubMed

Pircher H, Straganz GD, Ehehalt D, Morrow G, Tanguay RM, Jansen-Dürr P, Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase, J. Biol. Chem. 286 (42) (2011) 36500–36508. PubMed PMC

Pircher H, von Grafenstein S, Diener T, Metzger C, Albertini E, Taferner A, Unterluggauer H, Kramer C, Liedl KR, Jansen-Dürr P , Identification of FAH domain-containing protein 1 (FAHD1) as oxaloacetate decarboxylase, J. Biol. Chem. 290 (11) (2015) 6755–6762. PubMed PMC

Kim BY, Cho MH, Kim KJ, Cho KJ, Kim SW, Kim HS, Jung W-W, Lee BH, Lee BH, Lee SG, Effects of PRELI in oxidative-stressed HepG2 cells, Ann. Clin. Lab. Sci. 45 (4) (2015) 419–425. PubMed

Potting C, Wilmes C, Engmann T, Osman C, Langer T, Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35, EMBO J. 29 (17) (2010) 2888–2898. PubMed PMC

McKeller MR, Herrera-Rodriguez S, Ma W, Ortiz-Quintero B, Rangel R, Candé C, Sims-Mourtada JC, Melnikova V, Kashi C, Phan LM, Chen Z, Huang P, Dunner K, Kroemer G, Singh KK, Martinez-Valdez H, Vital function of PRELI and essential requirement of its LEA motif, Cell Death Dis. 1 (2) (2010) e21. PubMed PMC

Tsubouchi A, Tsuyama T, Fujioka M, Kohda H, Okamoto-Furuta K, Aigaki T, Uemura T, Mitochondrial protein Preli-like is required for development of dendritic arbors and prevents their regression in the drosophila sensory nervous system, Development 136 (22) (2009) 3757–3766. PubMed

Zhang L, Joshi AK, Hofmann J, Schweizer E, Smith S, Cloning, expression, and characterization of the human mitochondrial β-ketoacyl synthase: complementation of the yeast cem1 knock-out strain, J. Biol. Chem. 280 (13) (2005) 12422–12429. PubMed

Sada N, Lee S, Katsu T, Otsuki T, Inoue T, Targeting LDH enzymes with a stiripentol analog to treat epilepsy, Science 347 (6228) (2015) 1362–1367. PubMed

Pellerin L, Magistretti PJ, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. U. S. A. 91 (22) (1994) 10625–10629. PubMed PMC

Vining EPG, Tonic and atonic seizures: medical therapy and ketogenic diet, Epilepsia 50 (2009) 21–24. PubMed

Bough KJ, Rho JM, Anticonvulsant mechanisms of the ketogenic diet, Epilepsia 48 (1) (2007) 43–58. PubMed

Masino S, Rho J, Mechanisms of Ketogenic Diet Action, (2012). PubMed

Löscher W, Wlaź P, Rundfeldt C, Baran H, Hönack D, Anticonvulsant effects of the glycine/NMDA receptor ligands d-cycloserine and d-serine but not R-(+)-HA-966 in amygdala-kindled rats, Br. J. Pharmacol. 112 (1) (1994) 97–106. PubMed PMC

Klatte K, Kirschstein T, Otte D, Pothmann L, Müller L, Tokay T, Kober M, Uebachs M, Zimmer A, Beck H, Impaired d-serine-mediated cotransmission mediates cognitive dysfunction in epilepsy, J. Neurosci. 33 (32) (2013) 13066–13080. PubMed PMC

Brassier A, Valayannopoulos V, Bahi-Buisson N, Wiame E, Hubert L, Boddaert N, Kaminska A, Habarou F, Desguerre I, Van Schaftingen E, Ottolenghi C, de Lonlay P, Two new cases of serine deficiency disorders treated with l-serine, Eur. J. Paediatr. Neurol. 20 (1) (2016) 53–60. PubMed

Laschet JJ, Minier F, Kurcewicz I, Bureau MH, Trottier S, Jeanneteau F, Griffon N, Samyn B, Van Beeumen J, Louvel J, Sokoloff P, Pumain R, Glyceraldehyde-3-phosphate dehydrogenase is a GABAA receptor kinase linking glycolysis to neuronal inhibition, J. Neurosci. 24 (35) (2004) 7614–7622. PubMed PMC

Ding Y, Wang S, Zhang M.-m, Guo Y, Yang Y, Weng S.-q, Wu J.-m, Qiu X, Ding M.-p, Fructose-1,6-diphosphate inhibits seizure acquisition in fast hippocampal kindling, Neurosci. Lett. 477 (1) (2010) 33–36. PubMed

Ding Y, Wang S, Jiang Y, Yang Y, Zhang M, Guo Y, Wang S, M.-p. Ding, Fructose-1,6-diphosphate protects against epileptogenesis by modifying cation-chloride co-transporters in a model of amygdaloid-kindling temporal epilepticus, Brain Res. 1539 (2013) 87–94. PubMed

Lian X-Y, Khan FA, Stringer JL, Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats, J. Neurosci. 27 (44) (2007) 12007–12011. PubMed PMC

Siebel AM, Menezes FP, Capiotti KM, Kist LW, Schaefer IDC, Frantz JZ, Bogo MR, Da Silva RS, Bonan CD, Role of adenosine signaling on pentylenetetrazole-induced seizures in zebrafish, Zebrafish 12 (2) (2015) 127–136. PubMed PMC

Shen HY, Sun H, Hanthorn MM, Zhi Z, Lan JQ, Poulsen DJ, Wang RK, Boison D, Overexpression of adenosine kinase in cortical astrocytes generates focal neocortical epilepsy in mice: laboratory investigation, J. Neurosurg. 120 (3) (2014) 628–638. PubMed PMC

Muzzi M, Coppi E, Pugliese AM, Chiarugi A, Anticonvulsant effect of AMP by direct activation of adenosine A1 receptor, Exp. Neurol. 250 (2013) 189–193. PubMed

Zsolt K, Katalin AK, Gabor J, Janos B, Laszlo H, Renata L, Arpad D, Non-adenosine nucleoside inosine, guanosine and uridine as promising antiepileptic drugs: a summary of current literature, Mini-Rev. Med. Chem. 14 (13) (2014) 1033–1042. PubMed

Thyrion L, Raedt R, Portelli J, Van Loo P, Wadman WJ, Glorieux G, Lambrecht BN, Janssens S, Vonck K, Boon P, Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures, Exp. Neurol. 277 (2016) 244–251. PubMed

Coleman M, Landgrebe M, Landgrebe A, Purine Seizure Disorders, Epilepsia. 27 (3) (1986) 263–269. PubMed

Togha M, Akhondzadeh S, Motamedi M, Ahmadi B, Razeghi S, Allopurinol as adjunctive therapy in intractable epilepsy: a double-blind and placebo-controlled trial, Arch. Med. Res. 38 (3) (2007) 313–316. PubMed

Lai Y, Hu X, Chen G, Wang X, Zhu B, Down-regulation of adenylate kinase 5 in temporal lobe epilepsy patients and rat model, J. Neurol. Sci. 366 (2016) 20–26. PubMed

Warren TJ, Simeone TA, Smith DD, Grove R, Adamec J, Samson KK, Roundtree HM, Madhavan D, Simeone KA, Adenosine has two faces: regionally dichotomous adenosine tone in a model of epilepsy with comorbid sleep disorders, Neurobiol. Dis. 114 (2018) 45–52. PubMed PMC

Boison D, Adenosinergic signaling in epilepsy, Neuropharmacology 104 (2016) 131–139. PubMed PMC

Boison D, Role of adenosine in status epilepticus: A potential new target? Epilepsia 54 (0 6) (2013) 20–22. PubMed PMC

Kovács Z, Kékesi KA, Dobolyi Á, Lakatos R, Juhász G, Absence epileptic activity changing effects of non-adenosine nucleoside inosine, guanosine and uridine in Wistar albino Glaxo Rijswijk rats, Neuroscience. 300 (2015) 593–608. PubMed

Salerno C, D’Eufemia P, Finocchiaro R, Celli M, Spalice A, Iannetti P, Crifò C, Giardini O, Effect of d-ribose on purine synthesis and neurological symptoms in a patient with adenylosuccinase deficiency, Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1453 (1) (1999) 135–140. PubMed

Stover JF, Lowitzsch K, Kempski OS, Cerebrospinal fluid hypoxanthine, xanthine. and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases, Neurosci. Lett. 238 (1) (1997) 25–28. PubMed

Marangos PJ, Loftus T, Wiesner J, Lowe T, Rossi E, Browne CE, Gruber HE,. Adenosinergic modulation of Homocysteine-induced seizures in mice, Epilepsia. 31 (3) (1990) 239–246 PubMed

Pérez-Dueñas B, Sempere Á, Campistol J, Alonso-Colmenero I, Díez M, González V, Merinero B, Desviat LR, Artuch R, Novel features in the evolution of adenylosuccinate lyase deficiency, Eur. J. Paediatr.Neurol. 16 (4) (2012) 343–348 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...