Aberrant energy metabolism and redox balance in seizure onset zones of epileptic patients
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 NS085389
NINDS NIH HHS - United States
P20 RR017675
NCRR NIH HHS - United States
P20 GM104320
NIGMS NIH HHS - United States
R01 NS072179
NINDS NIH HHS - United States
R35 GM119770
NIGMS NIH HHS - United States
PubMed
32418907
PubMed Central
PMC10588813
DOI
10.1016/j.jprot.2020.103812
PII: S1874-3919(20)30180-9
Knihovny.cz E-zdroje
- Klíčová slova
- Drug resistant epilepsy, Protein carbonylation, Proteomics, Seizure,
- MeSH
- antikonvulziva terapeutické užití MeSH
- energetický metabolismus MeSH
- epilepsie * farmakoterapie MeSH
- lidé MeSH
- oxidace-redukce MeSH
- záchvaty * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- antikonvulziva MeSH
Epilepsy is a disorder that affects around 1% of the population. Approximately one third of patients do not respond to anti-convulsant drugs treatment. To understand the underlying biological processes involved in drug resistant epilepsy (DRE), a combination of proteomics strategies was used to compare molecular differences and enzymatic activities in tissue implicated in seizure onset to tissue with no abnormal activity within patients. Label free quantitation identified 17 proteins with altered abundance in the seizure onset zone as compared to tissue with normal activity. Assessment of oxidative protein damage by protein carbonylation identified additional 11 proteins with potentially altered function in the seizure onset zone. Pathway analysis revealed that most of the affected proteins are involved in energy metabolism and redox balance. Further, enzymatic assays showed significantly decreased activity of transketolase indicating a disruption of the Pentose Phosphate Pathway and diversion of intermediates into purine metabolic pathway, resulting in the generation of the potentially pro-convulsant metabolites. Altogether, these findings suggest that imbalance in energy metabolism and redox balance, pathways critical to proper neuronal function, play important roles in neuronal network hyperexcitability and can be used as a primary target for potential therapeutic strategies to combat DRE. SIGNIFICANCE: Epileptic seizures are some of the most difficult to treat neurological disorders. Up to 40% of patients with epilepsy are resistant to first- and second-line anticonvulsant therapy, a condition that has been classified as refractory epilepsy. One potential therapy for this patient population is the ketogenic diet (KD), which has been proven effective against multiple refractory seizure types However, compliance with the KD is extremely difficult, and carries severe risks, including ketoacidosis, renal failure, and dangerous electrolyte imbalances. Therefore, identification of pathways disruptions or shortages can potentially uncover cellular targets for anticonvulsants, leading to a personalized treatment approach depending on a patient's individual metabolic signature.
Zobrazit více v PubMed
Epilepsy Across the Spectrum: Promoting Health and Understanding, The National Academies Press, Washington, DC, 2012. PubMed
Lawn N, Chan J, Lee J, Dunne J, Is the first seizure epilepsy and when? Epilepsia 56 (9) (2015) 1425–1431. PubMed
Heron S, Scheffer I, Berkovic S, Dibbens L, Mulley J, Channelopathies in idiopathic epilepsy, Neurotherapeutics 4 (2) (2007) 295–304. PubMed
Berg AT, Identification of pharmacoresistant epilepsy, Neurol. Clin. 27 (4) (2009) 1003–1013. PubMed PMC
Begley CE, Famulari M, Annegers JF, Larirson DR, Reynolds TF, Coan S, Dubinsky S, Newmark ME, Leibson C, So EL, Rocca WA, The cost of epilepsy in the United States: an estimate from population-based clinical and survey data, Epilepsia 41 (3) (2000) 342–351. PubMed
Thhurman DJ, Logroscino G, Beghj E, Hauser WA, Hesdorffer DC, Newton CR, Scorza FA, Sander JW, Tomson T, The burden of premature mortality of epilepsy in high-income countries: a systematic review from the mortality task force of the international league against epilepsy, Epilepsia 58 (1) (2017) 17–26. PubMed PMC
Thurman DJ, Hesdorffer DC, French JA, Sudden unexpected death in epilepsy: assessing the public health burden, Epilepsia 55 (10) (2014) 1479–1485. PubMed
Gao L, Xia L, Pan SQ, Xiong T, Li SC, Burden of epilepsy: a prevalence-based cost of illness study of direct, indirect and intangible costs for epilepsy, Epilepsy Res. 110 (2015) 146–156. PubMed
Mansouri A, Fallah A, Valiante TA, Determining surgical candidacy in temporal lobe epilepsy, Epilepsy Res.Treat. 2012 (2012). PubMed PMC
Kanchanatawan B, Limothai C, Srikijvilaikul T, Maes M, Clinical predictors of 2-year outcome of resective epilepsy surgery in adults with refractory epilepsy: a cohort study, BMJ Open 4 (4) (2014) e004852. PubMed PMC
Chapman K, Wyllie E, Najm I, Ruggieri P, Bingaman W, Luders J, Kotagal P, Lachhwani D, Dinner D, Lüders HO, Seizure outcome after epilepsy surgery in patients with normal preoperative MRI, J. Neurol. Neurosurg. Psychiatry 76 (5) (2005) 710–713. PubMed PMC
Fong JS, Jehi L, Najm I, Prayson RA, Busch R, Bingaman W, Seizure outcome and its predictors after temporal lobe epilepsy surgery in patients with normal MRI, Epilepsia 52 (8) (2011) 1393–1401. PubMed
Holmes MD, Born DE, Kutsy RL, Wilensky AJ, Ojemann GA, Ojemann LM, Outcome after surgery in patients with refractory temporal lobe epilepsy and normal MRI, Seizure 9 (6) (2000) 407–411. PubMed
Walczak T, Surgical treatment of the epilepsies, ed 2. Edited by Engel Jerome Jr, New York, Raven Press, 1993, 786 pp, illustrated, $135.00, Ann. Neurol. 35 (2) (1994) 252.
Meador K, Psychiatry problems after epilepsy surgery, Epilepsy Curr. 5 (1) (2005) 28–29. PubMed PMC
Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH, The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial, Lancet Neurol. 7 (6) (2008) 500–506. PubMed
Georgiadis I, Kapsalaki EZ, Fountas KN, Temporal lobe resective surgery for medically intractable epilepsy: a review of complications and side effects, Epilepsy Res. Treat. 2013 (2013) 12. PubMed PMC
Xiao F, Chen D, Lu Y, Xiao Z, Guan LF, Yuan J, Wang L, Xi ZQ, Wang XF, Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy, Brain Res. 1255 (2009) 180–189. PubMed
Yu W, Chen D, Wang Z, Zhou C, Luo J, Xu Y, Shen L, Yin H, Tao S, Xiao Z, Xiao F, Lu Y, Wang X, Time-dependent decrease of clusterin as a potential cerebrospinal fluid biomarker for drug-resistant epilepsy, J. Mol. Neurosci. 54 (1) (2014) 1–9. PubMed
Mériaux C, Franck J, Park DB, Quanico J, Kim YH, Chung CK, Park YM, Steinbusch H, Salzet M, Fournier I, Human temporal lobe epilepsy analyses by tissue proteomics, Hippocampus 24 (6) (2014) 628–642. PubMed
Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C, Boneschi FM, Choi C, Morozov P, Das K, Teplitskaya E, Yu A, Cayanis E, Penchaszadeh G, Kottmann AH, Pedley TA, Hauser WA, Ottman R, Gilliam TC, Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features, Nat. Genet. 30 (3) (2002) 335–341. PubMed PMC
He S, Wang Q, He J, Pu H, Yang W, Ji J, Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe, Proteomics 6 (18) (2006) 4987–4996. PubMed
Yang JW, Czech T, Yamada J, Csaszar E, Baumgartner C, Slavc I, Lubec G, Aberrant cytosolic acyl-CoA thioester hydrolase in hippocampus of patients with mesial temporal lobe epilepsy, Amino Acids 27 (3–4) (2004) 269–275. PubMed
Yang J-W, Czech T, Gelpi E, Lubec G, Extravasation of plasma proteins can confound interpretation of proteomic studies of brain: a lesson from apo A-I in mesial temporal lobe epilepsy, Mol. Brain Res. 139 (2) (2005) 348–356. PubMed
Lemée J-M, Com E, Clavreul A, Avril T, Quillien V, de Tayrac M, Pineau C, Menei P, Proteomic analysis of glioblastomas: what is the best brain control sample? J. Proteome 85 (2013) 165–173. PubMed
Rowley S, Patel M, Mitochondrial involvement and oxidative stress in temporal lobe epilepsy, Free Radic. Biol. Med. 62 (2013) 121–131. PubMed PMC
Simeone KA, Matthews SA, Samson KK, Simeone TA, Targeting deficiencies in mitochondrial respiratory complex I and functional uncoupling exerts anti-seizure effects in a genetic model of temporal lobe epilepsy and in a model of acute temporal lobe seizures, Exp. Neurol. 251 (2014) 84–90. PubMed PMC
Kim JH, Sedlak M, Gao Q, Riley CP, Regnier FE, Adamec J, Oxidative stress studies in yeast with a frataxin mutant: a proteomics perspective, J. Proteome Res. 9 (2) (2010) 730–736. PubMed
Kim JH, Sedlak M, Gao Q, Riley CP, Regnier FE, Adamec J, Dynamics of protein damage in yeast frataxin mutant exposed to oxidative stress, OMICS 14 (6) (2010) 689–699. PubMed PMC
Boone Cory HT, Grove RA, Adamcova D, Braga CP, Adamec J, Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: an integration of 2D DIGE, quantitative proteomics, and bioinformatics, Proteomics 16 (13) (2016) 1889–1903. PubMed
Liang LP, Ho YS, Patel M, Mitochondrial superoxide production in kainate-induced hippocampal damage, Neuroscience 101 (3) (2000) 563–570. PubMed
Gupta YK, Briyal S, Chaudhary G, Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats, Pharmacol. Biochem. Behav. 71 (1–2) (2002) 245–249. PubMed
Ramos SF, Mendonça BP, Leffa DD, Pacheco R, Damiani AP, Hainzenreder G, Petronilho F, Dal-Pizzol F, Guerrini R, Calo G, Gavioli EC, Boeck CR, de Andrade VM, Effects of neuropeptide S on seizures and oxidative damage induced by pentylenetetrazole in mice, Pharmacol. Biochem. Behav. 103 (2) (2012) 197–203. PubMed
Patsoukis N, Zervoudakis G, Panagopoulos NT, Georgiou CD, Angelatou F, Matsokis NA, Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure, Neurosci. Lett. 357 (2) (2004) 83–86. PubMed
England K, Odriscoll C, Cotter TG, Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis, Cell Death Differ. 11 (3) (2003) 252–260. PubMed
Choi J, Rees HD, Weintraub ST, Levey AI, Chin L-S, Li L, Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with alzheimer and parkinson diseases, J. Biol. Chem. 280 (12) (2005) 11648–11655. PubMed
Doyle K, Fitzpatrick FA, Redox Signaling, alkylation (carbonylation) of conserved cysteines inactivates class I histone deacetylases 1, 2, and 3 and antagonizes their transcriptional repressor function, J. Biol. Chem. 285 (23) (2010) 17417–17424. PubMed PMC
Ryan K, Backos DS, Reigan P, Patel M, Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis, J. Neurosci. 32 (33) (2012) 11250–11258. PubMed PMC
Suzuki YJ, Carini M, Butterfield DA, Protein carbonylation, Antioxid. Redox Signal. 12 (3) (2010) 323–325. PubMed PMC
Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA, Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71, J. Neurochem. 82 (6) (2002) 1524–1532. PubMed
Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Lucius R, Hildebrand J, Zamboni N, Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells, Mol. Cell 59 (3) (2015) 359–371. PubMed
Stringer JL, Xu K, Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate, Epilepsia 49 (Suppl. 8) (2008) 101–103. PubMed PMC
Yang Y, Lane AN, Ricketts CJ, Sourbier C, Wei M-H, Shuch B, Pike L, Wu M, Rouault TA, Boros LG, Fan TWM, Linehan WM, Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma, PLoS One 8 (8) (2013) e72179. PubMed PMC
Fridman A, Saha A, Chan A, Darren E Casteel, Renate B. Pilz, Gerry R. Boss, Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate, Biochem. J. 454 (1) (2013) 91–99. PubMed
Holtzman D, Meyers R, Khait I, Jensen F, Brain creatine kinase reaction rates and reactant concentrations during seizures in developing rats, Epilepsy Res. 27 (1) (1997) 7–11. PubMed
Eraković V, Župan G, Varljen J, Laginja J, Simonić A, Altered activities of rat brain metabolic enzymes in electroconvulsive shock-induced seizures, Epilepsia 42 (2) (2001) 181–189. PubMed
Jost CR, Van der Zee CEEM, In ‘t Zandt HJA, Oerlemans F, Verheij M, Streijger F, Fransen J, Heerschap A, Cools AR, Wieringa B, Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility, Eur. J. Neurosci. 15 (10) (2002) 1692–1706. PubMed
Streijger F, Scheenen WJJM, Van Luijtelaar G, Oerlemans F, Wieringa B, Van der Zee CEEM, Complete brain-type creatine kinase deficiency in mice blocks seizure activity and affects intracellular calcium kinetics, Epilepsia 51 (1) (2010) 79–88. PubMed
Messina A, Reina S, Guarino F, De Pinto V, VDAC isoforms in mammals, Biochim. Biophys. Acta Biomembr. 1818 (6) (2012) 1466–1476. PubMed
Aggarwal M, Kondeti B, McKenna R, Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: a patent review, Expert Opin. Ther. Pat. 23 (6) (2013) 717–724. PubMed
Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin L-S, Li L, Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase l1 associated with idiopathic Parkinson’s and Alzheimer’s diseases, J. Biol. Chem. 279 (13) (2004) 13256–13264. PubMed
Konya C, Hatanaka Y, Fujiwara Y, Uchida K, Nagai Y, Wada K, Kabuta T, Parkinson’s disease-associated mutations in α-synuclein and UCH-L1 inhibit the unconventional secretion of UCH-L1, Neurochem. Int. 59 (2) (2011) 251–258. PubMed
Osaka H, Wang Y-L, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun Y-J, Sakurai M, Harada T, Hara Y, Kimura I, Chiba S, Namikawa K, Kiyama H, Noda M, Aoki S, Wada K, Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron, Hum. Mol. Genet. 12 (16) (2003) 1945–1958. PubMed
Castro JP, Jung T, Grune T, Almeida H, Actin carbonylation: from cell dysfunction to organism disorder, J. Proteome 92 (2013) 171–180. PubMed
Zeng L-H, Xu L, Rensing NR, Sinatra PM, Rothman SM, Wong M, Kainate seizures cause acute dendritic injury and actin depolymerization in vivo, J. Neurosci. 27 (43) (2007) 11604–11613. PubMed PMC
Wong M, Stabilizing dendritic stucture as a novel therapeutic approach for epilepsy, Expert. Rev. Neurother. 8 (6) (2008) 907–915. PubMed PMC
Sbai O, Khrestchatisky M, Esclapez M, Ferhat L, Drebrin a expression is altered after pilocarpine-induced seizures: time course of changes is consistent for a role in the integrity and stability of dendritic spines of hippocampal granule cells, Hippocampus 22 (3) (2012) 477–493. PubMed
Pircher H, Straganz GD, Ehehalt D, Morrow G, Tanguay RM, Jansen-Dürr P, Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase, J. Biol. Chem. 286 (42) (2011) 36500–36508. PubMed PMC
Pircher H, von Grafenstein S, Diener T, Metzger C, Albertini E, Taferner A, Unterluggauer H, Kramer C, Liedl KR, Jansen-Dürr P , Identification of FAH domain-containing protein 1 (FAHD1) as oxaloacetate decarboxylase, J. Biol. Chem. 290 (11) (2015) 6755–6762. PubMed PMC
Kim BY, Cho MH, Kim KJ, Cho KJ, Kim SW, Kim HS, Jung W-W, Lee BH, Lee BH, Lee SG, Effects of PRELI in oxidative-stressed HepG2 cells, Ann. Clin. Lab. Sci. 45 (4) (2015) 419–425. PubMed
Potting C, Wilmes C, Engmann T, Osman C, Langer T, Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35, EMBO J. 29 (17) (2010) 2888–2898. PubMed PMC
McKeller MR, Herrera-Rodriguez S, Ma W, Ortiz-Quintero B, Rangel R, Candé C, Sims-Mourtada JC, Melnikova V, Kashi C, Phan LM, Chen Z, Huang P, Dunner K, Kroemer G, Singh KK, Martinez-Valdez H, Vital function of PRELI and essential requirement of its LEA motif, Cell Death Dis. 1 (2) (2010) e21. PubMed PMC
Tsubouchi A, Tsuyama T, Fujioka M, Kohda H, Okamoto-Furuta K, Aigaki T, Uemura T, Mitochondrial protein Preli-like is required for development of dendritic arbors and prevents their regression in the drosophila sensory nervous system, Development 136 (22) (2009) 3757–3766. PubMed
Zhang L, Joshi AK, Hofmann J, Schweizer E, Smith S, Cloning, expression, and characterization of the human mitochondrial β-ketoacyl synthase: complementation of the yeast cem1 knock-out strain, J. Biol. Chem. 280 (13) (2005) 12422–12429. PubMed
Sada N, Lee S, Katsu T, Otsuki T, Inoue T, Targeting LDH enzymes with a stiripentol analog to treat epilepsy, Science 347 (6228) (2015) 1362–1367. PubMed
Pellerin L, Magistretti PJ, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. U. S. A. 91 (22) (1994) 10625–10629. PubMed PMC
Vining EPG, Tonic and atonic seizures: medical therapy and ketogenic diet, Epilepsia 50 (2009) 21–24. PubMed
Bough KJ, Rho JM, Anticonvulsant mechanisms of the ketogenic diet, Epilepsia 48 (1) (2007) 43–58. PubMed
Masino S, Rho J, Mechanisms of Ketogenic Diet Action, (2012). PubMed
Löscher W, Wlaź P, Rundfeldt C, Baran H, Hönack D, Anticonvulsant effects of the glycine/NMDA receptor ligands d-cycloserine and d-serine but not R-(+)-HA-966 in amygdala-kindled rats, Br. J. Pharmacol. 112 (1) (1994) 97–106. PubMed PMC
Klatte K, Kirschstein T, Otte D, Pothmann L, Müller L, Tokay T, Kober M, Uebachs M, Zimmer A, Beck H, Impaired d-serine-mediated cotransmission mediates cognitive dysfunction in epilepsy, J. Neurosci. 33 (32) (2013) 13066–13080. PubMed PMC
Brassier A, Valayannopoulos V, Bahi-Buisson N, Wiame E, Hubert L, Boddaert N, Kaminska A, Habarou F, Desguerre I, Van Schaftingen E, Ottolenghi C, de Lonlay P, Two new cases of serine deficiency disorders treated with l-serine, Eur. J. Paediatr. Neurol. 20 (1) (2016) 53–60. PubMed
Laschet JJ, Minier F, Kurcewicz I, Bureau MH, Trottier S, Jeanneteau F, Griffon N, Samyn B, Van Beeumen J, Louvel J, Sokoloff P, Pumain R, Glyceraldehyde-3-phosphate dehydrogenase is a GABAA receptor kinase linking glycolysis to neuronal inhibition, J. Neurosci. 24 (35) (2004) 7614–7622. PubMed PMC
Ding Y, Wang S, Zhang M.-m, Guo Y, Yang Y, Weng S.-q, Wu J.-m, Qiu X, Ding M.-p, Fructose-1,6-diphosphate inhibits seizure acquisition in fast hippocampal kindling, Neurosci. Lett. 477 (1) (2010) 33–36. PubMed
Ding Y, Wang S, Jiang Y, Yang Y, Zhang M, Guo Y, Wang S, M.-p. Ding, Fructose-1,6-diphosphate protects against epileptogenesis by modifying cation-chloride co-transporters in a model of amygdaloid-kindling temporal epilepticus, Brain Res. 1539 (2013) 87–94. PubMed
Lian X-Y, Khan FA, Stringer JL, Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats, J. Neurosci. 27 (44) (2007) 12007–12011. PubMed PMC
Siebel AM, Menezes FP, Capiotti KM, Kist LW, Schaefer IDC, Frantz JZ, Bogo MR, Da Silva RS, Bonan CD, Role of adenosine signaling on pentylenetetrazole-induced seizures in zebrafish, Zebrafish 12 (2) (2015) 127–136. PubMed PMC
Shen HY, Sun H, Hanthorn MM, Zhi Z, Lan JQ, Poulsen DJ, Wang RK, Boison D, Overexpression of adenosine kinase in cortical astrocytes generates focal neocortical epilepsy in mice: laboratory investigation, J. Neurosurg. 120 (3) (2014) 628–638. PubMed PMC
Muzzi M, Coppi E, Pugliese AM, Chiarugi A, Anticonvulsant effect of AMP by direct activation of adenosine A1 receptor, Exp. Neurol. 250 (2013) 189–193. PubMed
Zsolt K, Katalin AK, Gabor J, Janos B, Laszlo H, Renata L, Arpad D, Non-adenosine nucleoside inosine, guanosine and uridine as promising antiepileptic drugs: a summary of current literature, Mini-Rev. Med. Chem. 14 (13) (2014) 1033–1042. PubMed
Thyrion L, Raedt R, Portelli J, Van Loo P, Wadman WJ, Glorieux G, Lambrecht BN, Janssens S, Vonck K, Boon P, Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures, Exp. Neurol. 277 (2016) 244–251. PubMed
Coleman M, Landgrebe M, Landgrebe A, Purine Seizure Disorders, Epilepsia. 27 (3) (1986) 263–269. PubMed
Togha M, Akhondzadeh S, Motamedi M, Ahmadi B, Razeghi S, Allopurinol as adjunctive therapy in intractable epilepsy: a double-blind and placebo-controlled trial, Arch. Med. Res. 38 (3) (2007) 313–316. PubMed
Lai Y, Hu X, Chen G, Wang X, Zhu B, Down-regulation of adenylate kinase 5 in temporal lobe epilepsy patients and rat model, J. Neurol. Sci. 366 (2016) 20–26. PubMed
Warren TJ, Simeone TA, Smith DD, Grove R, Adamec J, Samson KK, Roundtree HM, Madhavan D, Simeone KA, Adenosine has two faces: regionally dichotomous adenosine tone in a model of epilepsy with comorbid sleep disorders, Neurobiol. Dis. 114 (2018) 45–52. PubMed PMC
Boison D, Adenosinergic signaling in epilepsy, Neuropharmacology 104 (2016) 131–139. PubMed PMC
Boison D, Role of adenosine in status epilepticus: A potential new target? Epilepsia 54 (0 6) (2013) 20–22. PubMed PMC
Kovács Z, Kékesi KA, Dobolyi Á, Lakatos R, Juhász G, Absence epileptic activity changing effects of non-adenosine nucleoside inosine, guanosine and uridine in Wistar albino Glaxo Rijswijk rats, Neuroscience. 300 (2015) 593–608. PubMed
Salerno C, D’Eufemia P, Finocchiaro R, Celli M, Spalice A, Iannetti P, Crifò C, Giardini O, Effect of d-ribose on purine synthesis and neurological symptoms in a patient with adenylosuccinase deficiency, Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1453 (1) (1999) 135–140. PubMed
Stover JF, Lowitzsch K, Kempski OS, Cerebrospinal fluid hypoxanthine, xanthine. and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases, Neurosci. Lett. 238 (1) (1997) 25–28. PubMed
Marangos PJ, Loftus T, Wiesner J, Lowe T, Rossi E, Browne CE, Gruber HE,. Adenosinergic modulation of Homocysteine-induced seizures in mice, Epilepsia. 31 (3) (1990) 239–246 PubMed
Pérez-Dueñas B, Sempere Á, Campistol J, Alonso-Colmenero I, Díez M, González V, Merinero B, Desviat LR, Artuch R, Novel features in the evolution of adenylosuccinate lyase deficiency, Eur. J. Paediatr.Neurol. 16 (4) (2012) 343–348 PubMed