Oocytes, embryos and pluripotent stem cells from a biomedical perspective

. 2019 Oct 23 ; 16 (3) : 508-523. [epub] 20191023

Status PubMed-not-MEDLINE Jazyk angličtina Země Brazílie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32435294

The veterinary and animal science professions are rapidly developing and their inherent and historical connection to agriculture is challenged by more biomedical and medical directions of research. While some consider this development as a risk of losing identity, it may also be seen as an opportunity for developing further and more sophisticated competences that may ultimately feed back to veterinary and animal science in a synergistic way. The present review describes how agriculture-related studies on bovine in vitro embryo production through studies of putative bovine and porcine embryonic stem cells led the way to more sophisticated studies of human induced pluripotent stem cells (iPSCs) using e.g. gene editing for modeling of neurodegeneration in man. However, instead of being a blind diversion from veterinary and animal science into medicine, these advanced studies of human iPSC-derived neurons build a set of competences that allowed us, in a more competent way, to focus on novel aspects of more veterinary and agricultural relevance in the form of porcine and canine iPSCs. These types of animal stem cells are of biomedical importance for modeling of iPSC-based therapy in man, but in particular the canine iPSCs are also important for understanding and modeling canine diseases, as e.g. canine cognitive dysfunction, for the benefit and therapy of dogs.

Zobrazit více v PubMed

Abe H, Otoi T, Tachikawa S, Yamashita S, Satoh T, Hoshi H. Fine structure of bovine morulae and blastocysts in vivo and in vitro. . Anat Embryol (Berl) 1999;199:519–527. PubMed

Anderson GB, Choi SJ, BonDurant RH. Survival of porcine inner cell masses in culture and after injection into blastocysts. Theriogenology. 1994;42:204–212. PubMed

Assey RJ, Hyttel P, Greve T, Purwantara B. Oocyte morphology in dominant and subordinate follicles. Mol Reprod Dev. 1994;37:335–344. a. PubMed

Assey RJ, Hyttel P, Roche JF, Boland M. Oocyte structure and follicular steroid concentrations in superovulated versus unstimulated heifers. Mol Reprod Dev. 1994;39:8–16. b. PubMed

Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–140. PubMed PMC

Azkona G, García-Belenguer S, Chacón G, Rosado B, León M, Palacio J. Prevalence and risk factors of behavioural changes associated with age-related cognitive impairment in geriatric dogs. J Small Anim Pract. 2009;50:87–91. PubMed

Baird A, Barsby T, Guest DJ. Derivation of Canine Induced Pluripotent Stem Cells. Reprod Domest Anim. 2015;50:669–676. PubMed

Betteridge KJ, Fléchon J-E. The anatomy and physiology of pre-attachment bovine embryos. Theriogenology. 1988;29:155–187.

Blomberg LA, Garrett WM, Guillomot M, Miles JR, Sonstegard TS, Van Tassell CP, Zuelke KA. Transcriptome profiling of the tubular porcine conceptus identifies the differential regulation of growth and developmentally associated genes. Mol Reprod Dev. 2006;73:1491–1502. PubMed

Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong C, Sakurai M, Sampaio RV, Suzuki K, Izpisua Belmonte JC, Ross PJ. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci U S A. 2018;115:2090–2095. PubMed PMC

Brackett BG, Bousquet D, Boice ML, Donawick WJ, Evans JF, Dressel MA. Normal development following in vitro fertilization in the cow. Biol Reprod. 1982;27:147–158. PubMed

Brons I, Gabrielle M, Smithers LE, Trotter MWB, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448:191–195. PubMed

Camous S, Kopecný V, Fléchon JE. Autoradiographic detection of the earliest stage of [3H]-uridine incorporation into the cow embryo. Biol Cell. 1986;58:195–200. PubMed

Campbell KHS, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–66. PubMed

Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–655. PubMed

Chen LR, Shiue YL, Bertolini L, Medrano JF. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology. 1999;52:195–212. PubMed

Chow L, Johnson V, Regan D, Wheat W, Webb S, Koch P, Dow S. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cell Res. 2017;25:221–232. PubMed PMC

Condic ML, Rao M. Alternative sources of pluripotent stem cells:ethical and scientific issues revisited. Stem Cells Dev. 2010;19:1121–1129. PubMed PMC

Cotman CW, Head E. The canine (dog) model of human aging and disease:dietary, environmental and immunotherapy approaches. J Alzheimers Dis. 2008;15:685–707. PubMed

Edwards LJ, Batt PA, Gandolfi F, Gardner DK. Modifications made to culture medium by bovine oviduct epithelial cells:Changes to carbohydrates stimulate bovine embryo development. Mol Reprod Dev. 1997;46:146–154. PubMed

Elling U, Klasen C, Eisenberger T, Anlag K, Treier M. Murine inner cell mass-derived lineages depend on Sall4 function. Proc Natl Acad Sci U S A. 2006;103:16319–16324. PubMed PMC

Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–156. PubMed

Ezashi T, Yuan Y, Roberts R, Michael Pluripotent Stem Cells from Domesticated Mammals. Annu Rev Anim Biosci. 2016;4:223–253. PubMed

Fair T, Hyttel P, Greve T, Boland M. Nucleus structure and transcriptional activity in relation to oocyte diameter in cattle. Mol Reprod Dev. 1996;43:503–512. PubMed

Fair T, Hulshof SC, Hyttel P, Greve T, Boland M. Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles. Mol Reprod Dev. 1997;46:208–215. a. PubMed

Fair T, Hulshof SC, Hyttel P, Greve T, Boland M. Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat Embryol (Berl) 1997;195:327–336. b. PubMed

Friede RL, Van Houten WH. Neuronal extension and glial supply:functional significance of glia. Proc Natl Acad Sci U S A. 1962;48:817–821. PubMed PMC

Gandolfi F, Pennarossa G, Maffei S, Brevini T. Why is it so Difficult to Derive Pluripotent Stem Cells in Domestic Ungulates? Reprod Domest Anim. 2012;47:11–17. PubMed

George F, Daniaux C, Genicot G, Verhaeghe B, Lambert P, Donnay I. Set up of a serum-free culture system for bovine embryos:Embryo development and quality before and after transient transfer. Theriogenology. 2008;69:612–623. PubMed

Gilmore KM, Greer KA. Why is the dog an ideal model for aging research? Exp Gerontol. 2015;71:14–20. PubMed

Gjørret JO, Maddox-Hyttel P. Attempts towards derivation and establishment of bovine embryonic stem cell-like cultures. Reprod Fertil Dev. 2005;17:113–124. PubMed

Gonçalves NJN, Bressan FF, Roballo KCS, Meirelles F V, Xavier PLP, Fukumasu H, Williams C, Breen M, Koh S, Sper R, Piedrahita J, Ambrósio CE. Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts. Theriogenology. 2017;92:75–82. PubMed

Greve T, Callesen H. Embryo technology:implications for fertility in cattle. Rev Sci Tech. 2005;24:405–412. PubMed

Hall VJ, Christensen J, Gao Y, Schmidt MH, Hyttel P. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev Dyn. 2009;238:2014–2024. PubMed

Hall VJ, Jacobsen J V., Rasmussen MA, Hyttel P. Ultrastructural and molecular distinctions between the porcine inner cell mass and epiblast reveal unique pluripotent cell states. Dev Dyn. 2010;239:2911–2920. PubMed

Hargus G, Ehrlich M, Hallmann A-L, Kuhlmann T. Human stem cell models of neurodegeneration:a novel approach to study mechanisms of disease development. Acta Neuropathol. 2014;127:151–173. PubMed

Hassoun R, Schwartz P, Feistel K, Blum M, Viebahn C. Axial differentiation and early gastrulation stages of the pig embryo. Differentiation. 2009;78:301–311. PubMed

Hay-Schmidt A, Viuff D, Greve T, Hyttel P. Transcriptional activity in in vivo developed early cleavage stage bovine embryos. Theriogenology. 2001;56:167–176. PubMed

Hedges EC, Mehler VJ, Nishimura AL. The Use of Stem Cells to Model Amyotrophic Lateral Sclerosis and Frontotemporal Dementia:From Basic Research to Regenerative Medicine. Stem Cells Int. 2016;2016:9279516. PubMed PMC

Hendriksen PJ, Vos PL, Steenweg WN, Bevers MM, Dieleman SJ. Bovine follicular development and its effect on the in vitro competence of oocytes. Theriogenology. 2000;53:11–20. PubMed

Høffding MK, Hyttel P. Ultrastructural visualization of the Mesenchymal-to-Epithelial Transition during reprogramming of human fibroblasts to induced pluripotent stem cells. Stem Cell Res. 2015;14:39–53. PubMed

Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology. 1999;52:683–700. PubMed

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–1278. PubMed PMC

Hyttel P, Xu KP, Smith S GT. Ultrastructure of in-vitro oocyte maturation in cattle. . J Reprod Fertil. 1986;78(2):615–625. a. PubMed

Hyttel P, Callesen H, Greve T. Ultrastructural features of preovulatory oocyte maturation in superovulated cattle. J Reprod Fertil. 1986;76:645–656. b. PubMed

Hyttel P. Bovine cumulus-oocyte disconnection in vitro. . Anat Embryol (Berl) 1987;176:41–44. PubMed

Hyttel P, Greve T, Callesen H. Ultrastructure of in-vivo fertilization in superovulated cattle. J Reprod Fertil. 1988;82:1–13. a. PubMed

Hyttel P, Xu KP, Greve T. Scanning electron microscopy of in vitro fertilization in cattle. Anat Embryol (Berl) 1988;178:41–46. b. PubMed

Hyttel P, Xu KP, Greve T. Ultrastructural abnormalities of in vitro fertilization of in vitro matured bovine oocytes. Anat Embryol (Berl) 1988;178:47–52. c. PubMed

Hyttel P, Viuff D, Avery B, Laurincik J, Greve T. Transcription and cell cycle-dependent development of intranuclear bodies and granules in two-cell bovine embryos. J Reprod Fertil. 1996;108:263–270. PubMed

Isaacs AM, Johannsen P, Holm I, Nielsen JE, FReJA consortium Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res. 2011;8:246–251. PubMed PMC

Iwasaki Shizue, Campbell KHS, Galli C, Akiyama K, Iwasaki Setsuo. Production of Live Calves Derived from Embryonic Stem-Like Cells Aggregated with Tetraploid Embryos1. Biol Reprod. 2000;62:470–475. PubMed

Keefer CL, Pant D, Blomberg L, Talbot NC. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim Reprod Sci. 2007;98:147–168. PubMed

King WA, Niar A, Chartrain I, Betteridge KJ, Guay P. Nucleolus organizer regions and nucleoli in preattachment bovine embryos. J Reprod Fertil. 1988;82:87–95. PubMed

Koh S, Thomas R, Tsai S, Bischoff S, Lim J-H, Breen M, Olby NJ, Piedrahita JA. Growth requirements and chromosomal instability of induced pluripotent stem cells generated from adult canine fibroblasts. Stem Cells Dev. 2013;22:951–963. PubMed PMC

Kopecný V, Fléchon JE, Camous S, Fulka J. Nucleologenesis and the onset of transcription in the eight-cell bovine embryo:fine-structural autoradiographic study. Mol Reprod Dev. 1989;1:79–90. PubMed

Krasniak CS, Ahmad ST. The role of CHMP2BIntron5 in autophagy and frontotemporal dementia. Brain Res. 2016;1649:151–157. PubMed PMC

Kruip TAM, Cran DG, van Beneden TH, Dieleman SJ. Structural changes in bovine oocytes during final maturation in vivo. . Gamete Res. 1983;8:29–47.

Kruip TAM, den Daas JHG. In vitro produced and cloned embryos:Effects on pregnancy, parturition and offspring. Theriogenology. 1997;47:43–52.

Kuijk EW, du Puy L, van Tol HT, Haagsman HP, Colenbrander B, Roelen BA. Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos. BMC Dev Biol. 2007;7:58. PubMed PMC

Kuijk EW, Du Puy L, Van Tol HTA, Oei CHY, Haagsman HP, Colenbrander B, Roelen BAJ. Differences in early lineage segregation between mammals. Dev Dyn. 2008;237:918–927. PubMed

Kuijk EW, Chuva de Sousa Lopes SM, Geijsen N, Macklon N, Roelen BAJ. The different shades of mammalian pluripotent stem cells. Hum Reprod Update. 2011;17:254–271. PubMed PMC

Laurincík J, Hyttel P, Baran V, Eckert J, Lucas-Hahn A, Pivko J, Niemann H, Brem G, Schellander K. A detailed analysis of pronucleus development in bovine zygotes in vitro:cell-cycle chronology and ultrastructure. Mol Reprod Dev. 1998;50:192–199. PubMed

Laurincik J, Kopecny V, Hyttel P. Pronucleus development and DNA synthesis in bovine zygotes in vivo. . Theriogenology. 1994;42:1285–1293.

Laurincik J, Kopecny V, Hyttel P. Detailed analysis of pronucleus development in bovine zygotes in vivo:Ultrastructure and cell cycle chronology. Mol Reprod Dev. 1996;43:62–69. PubMed

Laurincik J, Thomsen PD, Hay-Schmidt A, Avery B, Greve T, Ochs RL, Hyttel P. Nucleolar Proteins and Nuclear Ultrastructure in Preimplantation Bovine Embryos Produced In vitro1. Biol Reprod. 2000;62:1024–1032. PubMed

Laurincik J, Schmoll F, Mahabir E, Schneider H, Stojkovic M, Zakhartchenko V, Prelle K, Hendrixen PJM, Voss PLAM, Moeszlacher GG, Avery B, Dieleman SJ, Besenfelder U, Müller M, Ochs RL, Wolf E, Schellander K, Maddox-Hyttel P. Nucleolar proteins and ultrastructure in bovine in vivo developed, in vitro produced, and parthenogenetic cleavage-stage embryos. Mol Reprod Dev. 2003;65:73–85. PubMed

Lee AS, Xu D, Plews JR, Nguyen PK, Nag D, Lyons JK, Han L, Hu S, Lan F, Liu J, Huang M, Narsinh KH, Long CT, de Almeida PE, Levi B, Kooreman N, Bangs C, Pacharinsak C, Ikeno F, Yeung AC, Gambhir SS, Robbins RC, Longaker MT, Wu JC. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J Biol Chem. 2011;286:32697–32704. PubMed PMC

Lee S, Huang EJ. Modeling ALS and FTD with iPSC-derived neurons. Brain Res. 2017;1656:88–97. PubMed PMC

Li D, Secher JO, Juhl M, Mashayekhi K, Nielsen TT, Holst B, Hyttel P, Freude KK, Hall VJ. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts. Cell Cycle. 2017;16:1070–1084. PubMed PMC

Li D, Secher J, Hyttel P, Ivask M, Kolko M, Hall VJ, Freude KK. Generation of transgene-free porcine intermediate type induced pluripotent stem cells. Cell Cycle. 2018;17:2547–2563. PubMed PMC

Lonergan P. State-of-the-art embryo technologies in cattle. Soc Reprod Fertil Suppl. 2007;64:315–325. PubMed

De Los Angeles A, Loh Y-H, Tesar PJ, Daley GQ. Accessing naïve human pluripotency. Curr Opin Genet Dev. 2012;22:272–282. PubMed PMC

Luo J, Suhr ST, Chang EA, Wang K, Ross PJ, Nelson LL, Venta PJ, Knott JG, Cibelli JB. Generation of leukemia inhibitory factor and basic fibroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev. 2011;20:1669–1678. PubMed PMC

Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol. 2013;997:23–33. PubMed PMC

Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634–7638. PubMed PMC

McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature. 2000;405:1066–1069. PubMed

Mitalipova M, Beyhan Z, First NL. Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning. 2001;3:59–67. PubMed

Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–642. PubMed

Mohr LR, Trounson AO. Structural Changes Associated with Freezing of Bovine Embryos. Biol Reprod. 1981;25:1009–1025. PubMed

Nagashima H, Giannakis C, Ashman RJ, Nottle MB. Sex Differentiation and Germ Cell Production in Chimeric Pigs Produced by Inner Cell Mass Injection into Blastocysts. Biol Reprod. 2004;70:702–707. PubMed

Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W, Hemberger M. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol. 2008;10:1280–1290. PubMed PMC

Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–391. PubMed

Nishimura T, Hatoya S, Kanegi R, Wijesekera DPH, Sanno K, Tanaka E, Sugiura K, Hiromitsu Tamada NK, Imai H, Inaba T. Feeder-independent canine induced pluripotent stem cells maintained under serum-free conditions. Mol Reprod Dev. 2017;84:329–339. PubMed

Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev. 2008;125:270–283. PubMed

Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–412. PubMed

Onishi A, Takeda K, Komatsu M, Akita T, Kojima T. Production of Chimeric Pigs and the Analysis of Chimerism using Mitochondrial Deoxyribonucleic Acid as a Cell Marker. Biol Reprod. 1994;51:1069–1075. PubMed

Perleberg C, Kind A, Schnieke A. Genetically engineered pigs as models for human disease. Dis Model Mech. 2018;11:dmm030783. PubMed PMC

Pessôa LVF, Bressan Freude KK. Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World J Stem Cells. 2019 In press. PubMed PMC

Poon A, Zhang Y, Chandrasekaran A, Phanthong P, Schmid B, Nielsen TT, Freude KK. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells:Possibilities and challenges. N Biotechnol. 2017;39:190–198. PubMed

Ralston A, Rossant J. Genetic regulation of stem cell origins in the mouse embryo. Clin Genet. 2005;68:106–112. PubMed

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–2308. PubMed PMC

Rasmussen MA, Holst B, Tümer Z, Johnsen MG, Zhou S, Stummann TC, Hyttel P, Clausen C. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage. Stem Cell Reports. 2014;3:404–413. PubMed PMC

Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system:biology, mechanisms and applications. Biochimie. 2015;117:119–128. PubMed

Rossor MN, Fox NC, Mummery CJ, Schott JM, Warren JD. The diagnosis of young-onset dementia. Lancet Neurol. 2010;9:793–806. PubMed PMC

Salvin HE, McGreevy PD, Sachdev PS, Valenzuela MJ. Under diagnosis of canine cognitive dysfunction:A cross-sectional survey of older companion dogs. Vet J. 2010;184:277–281. PubMed

Schnieke AE1, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman ACK. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science. 1997;278:2130–2133. PubMed

Schöler HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature. 1990;344:435–439. PubMed

Seelaar H, Rohrer JD, Pijnenburg YAL, Fox NC, van Swieten JC. Clinical, genetic and pathological heterogeneity of frontotemporal dementia:a review. J Neurol Neurosurg Psychiatry. 2011;82:476–486. PubMed

Shimada H, Nakada A, Hashimoto Y, Shigeno K, Shionoya Y, Nakamura T. Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev. 2010;77:2. PubMed

Sica RE, Caccuri R, Quarracino C, Capani F. Are astrocytes executive cells within the central nervous system? Arq Neuropsiquiatr. 2016;74:671–678. PubMed

Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H, Nielsen JE, Hodges JR, Spillantini MG, Thusgaard T, Brandner S, Brun A, Rossor MN, Gade A, Johannsen P, Sørensen SA, Gydesen S, Fisher EM, Collinge J. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37:806–808. PubMed

Smith GD, Takayama S, Swain JE. Rethinking in vitro embryo culture:new developments in culture platforms and potential to improve assisted reproductive technologies. Biol Reprod. 2012;86:62. PubMed PMC

Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells. 2009;27:543–549. PubMed PMC

Starkey MP, Scase TJ, Mellersh CS, Murphy S. Dogs really are man’s best friend--canine genomics has applications in veterinary and human medicine! Brief Funct Genomic Proteomic. 2005;4:112–128. PubMed

Studzinski CM, Araujo JA, Milgram NW. The canine model of human cognitive aging and dementia:pharmacological validity of the model for assessment of human cognitive-enhancing drugs. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:489–498. PubMed

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. PubMed

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. PubMed

Tang D-Q, Wang Q, Burkhardt BR, Litherland SA, Atkinson MA, Yang L-J. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am J Stem Cells. 2012;1:114–127. PubMed PMC

Telugu BPVL, Ezashi T, Roberts RM. The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev. 2010;6:31–41. PubMed

Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RDG. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448:196–199. PubMed

Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51:503–512. PubMed

Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. PubMed

Tsukamoto M, Nishimura T, Yodoe K, Kanegi R, Tsujimoto Y, Alam ME, Kuramochi M, Kuwamura M, Ohtaka M, Nishimura K, Nakanishi M, Inaba T, Sugiura K, Hatoya S. Generation of Footprint-Free Canine Induced Pluripotent Stem Cells Using Auto-Erasable Sendai Virus Vector. Stem Cells Dev. 2018;27:1577–1586. PubMed

Urwin H, Authier A, Nielsen JE, Metcalf D, Powell C, Froud K, Malcolm DS, Holm I, Johannsen P, Brown J, Fisher EMC, van der Zee J, Bruyland M, FReJA Consortium C, Van Broeckhoven C, Collinge J, Brandner S, Futter C, Isaacs AM. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum Mol Genet. 2010;19:2228–2238. PubMed PMC

Vajta G, Korösi T, Du Y, Nakata K, Ieda S, Kuwayama M, Nagy ZP. The Well-of-the-Well system:an efficient approach to improve embryo development. Reprod Biomed Online. 2008;17:73–81. PubMed

Vejlsted M, Offenberg H, Thorup F, Maddox-Hyttel P. Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation. Mol Reprod Dev. 2006;73:709–718. PubMed

Viana J. Statistics of embryo production and transfer in domestic farm animals. International Embryo Transfer Technology Society; 2018. Newsletter Dec 2018.

Viuff D, Avery B, Greve T, King WA, Hyttel P. Transcriptional activity in in vitro produced bovine two- and four-cell embryos. Mol Reprod Dev. 1996;43:171–179. PubMed

Weltner J, Balboa D, Katayama S, Bespalov M, Krjutškov K, Jouhilahti E-M, Trokovic R, Kere J, Otonkoski T. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 2018;9:2643. PubMed PMC

West FD, Terlouw SL, Kwon DJ, Mumaw JL, Dhara SK, Hasneen K, Dobrinsky JR, Stice SL. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 2010;19:1211–1220. PubMed

West FD, Uhl EW, Liu Y, Stowe H, Lu Y, Yu P, Gallegos-Cardenas A, Pratt SL, Stice SL. Brief report:chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells. 2011;29:1640–1643. PubMed

Whitworth DJ, Ovchinnikov DA, Wolvetang EJ. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev. 2012;21:2288–2297. PubMed

Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–813. PubMed

Wolf Xenia Asbaek, Serup P, Hyttel P. Three-dimensional immunohistochemical characterization of lineage commitment by localization of T and FOXA2 in porcine peri-implantation embryos. Dev Dyn. 2011;240:890–897. a. PubMed

Wolf Xenia Asbæk, Serup P, Hyttel P. Three-dimensional localisation of NANOG, OCT4, and E-CADHERIN in porcine pre- and peri-implantation embryos. Dev Dyn. 2011;240:204–210. b. PubMed

Xu KP, Greve T, Callesen H, Hyttel P. Pregnancy resulting from cattle oocytes matured and fertilized in vitro. . J Reprod Fertil. 1987;81:501–514. PubMed

Xue B, Li Y, He Y, Wei R, Sun R, Yin Z, Bou G, Liu Z. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In vivo. In: Cooney A.J, editor. PLoS One. Vol. 11. 2016. p. e0151737. PubMed PMC

Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development. 2007;134:3827–3836. PubMed

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. PubMed

Yumlu S, Stumm J, Bashir S, Dreyer A-K, Lisowski P, Danner E, Kühn R. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9. Methods. 2017;121-122:29–44. PubMed

van der Zee J, Urwin H, Engelborghs S, Bruyland M, Vandenberghe R, Dermaut B, De Pooter T, Peeters K, Santens P, De Deyn PP, Fisher EM, Collinge J, Isaacs AM, Van Broeckhoven C. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. . Hum Mol Genet. 2008;17:313–322. PubMed

Zhang J, Tam W-L, Tong GQ, Wu Q, Chan H-Y, Soh B-S, Lou Y, Yang J, Ma Y, Chai L, Ng H-H, Lufkin T, Robson P, Lim B. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8:1114–1123. PubMed

Zhang Y, Schmid B, Nikolaisen NK, Rasmussen MA, Aldana BI, Agger M, Calloe K, Stummann TC, Larsen HM, Nielsen TT, Huang J, Xu F, Liu X, Bolund L, Meyer M, Bak LK, Waagepetersen HS, Luo Y, Nielsen JE, FReJA Consortium B, Holst B, Clausen C, Hyttel P, Freude KK. Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B. Stem Cell Reports. 2017;8:648–658. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...