Development of ZnO Nanoflake Type Structures Using Silk Fibres as Template for Water Pollutants Remediation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NanoEnviCz, under Project No. LM2018124
Ministry of Education, Youth and Sports in the Czech Republic
HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports of the Czech Republic and European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education.
PubMed
32443444
PubMed Central
PMC7284581
DOI
10.3390/polym12051151
PII: polym12051151
Knihovny.cz E-zdroje
- Klíčová slova
- ZnO, antibacterial efficiency, dye removal, nanoflakes, photo-degradation, silk fibers,
- Publikační typ
- časopisecké články MeSH
We have fabricated ZnO nanoflake structures using degummed silk fibers as templates, via soaking and calcining the silk fibers bearing ZnO nanoparticles at 150 °C for 6 h. The obtained ZnO nanostructures were characterized using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and UV-vis and fluorescence spectroscopic analysis. The size (~500-700 nm) in length and thicknesses (~60 nm) of ZnO nanoflakes were produced. The catalysis performances of ZnO nanoflakes on silk fibers (ZnSk) via photo-degradation of naphthalene (93% in 256 min), as well as Rose Bengal dye removal (~1.7 mM g-1) through adsorption from aqueous solution, were practically observed. Further, ZnSk displayed superb antibacterial activity against the tested model gram-negative Escherichia coli bacterium. The produced ZnSk has huge scope to be used for real-world water contaminants remediation applications.
Zobrazit více v PubMed
Park K.-H., Han G.D., Neoh K.C., Kim T.-S., Shim J.H., Park H.-D. Antibacterial activity of the thin ZnO film formed by atomic layer deposition under UV-A light. Chem. Eng. J. 2017;328:988–996. doi: 10.1016/j.cej.2017.07.112. DOI
Lian X., Li Y., An D., Zou Y., Wang Q., Zhang N. Synthesis of porous ZnO nanostructures using bamboo fibers as templates. Mater. Sci.-Pol. 2014;32:514–520. doi: 10.2478/s13536-014-0225-x. DOI
Umar A., Hahn Y.-B., editors. Metal Oxide Nanostructures and Their Applications. American Scientific Publ.; Los Angeles, CA, USA: 2010. Nanotechnology book series.
Khin M.M., Nair A.S., Babu V.J., Murugan R., Ramakrishna S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012;5:8075–8109. doi: 10.1039/c2ee21818f. DOI
Samadi M., Zirak M., Naseri A., Kheirabadi M., Ebrahimi M., Moshfegh A.Z. Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: A review. Res. Chem. Intermed. 2019;45:2197–2254. doi: 10.1007/s11164-018-03729-5. DOI
Szatkowski T., Siwińska-Stefańska K., Wysokowski M., Stelling A.L., Joseph Y., Ehrlich H., Jesionowski T. Immobilization of Titanium(IV) Oxide onto 3D Spongin Scaffolds of Marine Sponge Origin According to Extreme Biomimetics Principles for Removal of C.I. Basic Blue 9. Biomimetics. 2017;2:4. doi: 10.3390/biomimetics2020004. PubMed DOI PMC
Unterlass M.M. Geomimetics and Extreme Biomimetics Inspired by Hydrothermal Systems—What Can We Learn from Nature for Materials Synthesis? Biomimetics. 2017;2:8. doi: 10.3390/biomimetics2020008. PubMed DOI PMC
Ehrlich H., editor. Extreme Biomimetics. Springer International Publishing; Cham, Switzerland: 2017.
Wysokowski M., Motylenko M., Beyer J., Makarova A., Stöcker H., Walter J., Galli R., Kaiser S., Vyalikh D., Bazhenov V.V., et al. Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Res. 2015;8:2288–2301. doi: 10.1007/s12274-015-0739-5. DOI
Wysokowski M., Motylenko M., Stöcker H., Bazhenov V.V., Langer E., Dobrowolska A., Czaczyk K., Galli R., Stelling A.L., Behm T., et al. An extreme biomimetic approach: Hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J. Mater. Chem. B. 2013;1:6469–6476. doi: 10.1039/c3tb21186j. PubMed DOI
Hongfeng L., Jia L., Jun W. Synthesis of Biomorphic ZnO Using Cotton as the Biotemplate. Mater. Rev. 2008:S3
Han J., Su H., Xu J., Song W., Gu Y., Chen Y., Moon W.-J., Zhang D. Silk-mediated synthesis and modification of photoluminescent ZnO nanoparticles. J. Nanopart. Res. 2012;14:726. doi: 10.1007/s11051-012-0726-7. DOI
Shubha P., Gowda M.L., Namratha K., Shyamsunder S., Manjunatha H.B., Byrappa K. Ex-situ fabrication of ZnO nanoparticles coated silk fiber for surgical applications. Mater. Chem. Phys. 2019;231:21–26. doi: 10.1016/j.matchemphys.2019.04.012. DOI
Gulrajani M.L., Gupta D., Periyasamy S., Muthu S.G. Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. J. Appl. Polym. Sci. 2008;108:614–623. doi: 10.1002/app.27584. DOI
Gore P.M., Naebe M., Wang X., Kandasubramanian B. Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chem. Eng. J. 2019;374:437–470. doi: 10.1016/j.cej.2019.05.163. DOI
Zheng K., Zhong J., Qi Z., Ling S., Kaplan D.L. Isolation of Silk Mesostructures for Electronic and Environmental Applications. Adv. Funct. Mater. 2018;28:1806380. doi: 10.1002/adfm.201806380. DOI
Tomczak M.M., Gupta M.K., Drummy L.F., Rozenzhak S.M., Naik R.R. Morphological control and assembly of zinc oxide using a biotemplate. Acta Biomater. 2009;5:876–882. doi: 10.1016/j.actbio.2008.11.011. PubMed DOI
Bertilsson S., Widenfalk A. Photochemical degradation of PAHs in freshwaters and their impact on bacterial growth–influence of water chemistry. Hydrobiologia. 2002;469:23–32. doi: 10.1023/A:1015579628189. DOI
Naushad M., Al Othman Z.A., Awual M.R., Alfadul S.M., Ahamad T. Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: Kinetics, isotherms, and thermodynamic studies. Desalin. Water Treat. 2016;57:13527–13533. doi: 10.1080/19443994.2015.1060169. DOI
Cai L., Shao H., Hu X., Zhang Y. Reinforced and Ultraviolet Resistant Silks from Silkworms Fed with Titanium Dioxide Nanoparticles. ACS Sustain. Chem. Eng. 2015;3:2551–2557. doi: 10.1021/acssuschemeng.5b00749. DOI
Djelloul A., Bouzid K., Guerrab F. Role of Substrate Temperature on the Structural and Morphological Properties of ZnO Thin Films Deposited by Ultrasonic Spray Pyrolysis. Turk. J. Phys. 2008;32:49–58.
Silvestri D., Mikšíček J., Wacławek S., Torres-Mendieta R., Padil V.V.T., Černík M. Production of electrospun nanofibers based on graphene oxide/gum Arabic. Int. J. Biol. Macromol. 2019;124:396–402. doi: 10.1016/j.ijbiomac.2018.11.243. PubMed DOI
Cao T.-T., Zhang Y.-Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;61:940–952. doi: 10.1016/j.msec.2015.12.082. PubMed DOI
Dong Q., Su H., Zhang D. In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J. Phys. Chem. B. 2005;109:17429–17434. doi: 10.1021/jp052826z. PubMed DOI
Zhang H., Li L.-L., Dai F.-Y., Zhang H.-H., Ni B., Zhou W., Yang X., Wu Y.-Z. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. J. Transl. Med. 2012;10:117. doi: 10.1186/1479-5876-10-117. PubMed DOI PMC
Koutu V., Shastri L., Malik M.M. Effect of NaOH concentration on optical properties of zinc oxide nanoparticles. Mater. Sci.-Pol. 2016;34:819–827. doi: 10.1515/msp-2016-0119. DOI
Khaghanpour Z., Naghibi S. Perforated ZnO nanoflakes as a new feature of ZnO achieved by the hydrothermal-assisted sol–gel technique. J. Nanostructure Chem. 2017;7:55–59. doi: 10.1007/s40097-017-0215-8. DOI
Assi N. Synthesis of ZnO-nanoparticles by microwave assisted sol-gel method and its role in photocatalytic degradation of food dye Tartrazine (Acid Yellow 23) Int. J. Nano Dimens. 2017;8:241–249.
Hammad T.M., Salem J.K., Harrison R.G. Synthesis, Characterizaton, and Optical Properties of Y-Doped ZnO Nanaoparticles. Nano. 2009;4:225–232. doi: 10.1142/S1793292009001691. DOI
Liqiang J., Yichun Q., Baiqi W., Shudan L., Baojiang J., Libin Y., Wei F., Honggang F., Jiazhong S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells. 2006;90:1773–1787. doi: 10.1016/j.solmat.2005.11.007. DOI
Lair A., Ferronato C., Chovelon J.-M., Herrmann J.-M. Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions. J. Photochem. Photobiol. Chem. 2008;193:193–203. doi: 10.1016/j.jphotochem.2007.06.025. DOI
Jing L., Chen B., Zhang B., Zheng J., Liu B. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration. Mar. Pollut. Bull. 2014;81:149–156. doi: 10.1016/j.marpolbul.2014.02.003. PubMed DOI
Xu F., Yuan Z.-Y., Du G.-H., Ren T.-Z., Bouvy C., Halasa M., Su B.-L. Simple approach to highly oriented ZnO nanowire arrays: Large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology. 2006;17:588–594. doi: 10.1088/0957-4484/17/2/041. DOI
Singh P., Mondal K., Sharma A. Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J. Colloid Interface Sci. 2013;394:208–215. doi: 10.1016/j.jcis.2012.12.006. PubMed DOI
Chakraborty J.N. 15-Dyeing with acid dye. In: Chakraborty J.N., editor. Fundamentals and Practices in Colouration of Textiles. Woodhead Publishing India; New Delhi, Indian: 2014. pp. 177–186.
Kumar Gupta V., Mittal A., Jhare D., Mittal J. Batch and bulk removal of hazardous colouring agent Rose Bengal by adsorption techniques using bottom ash as adsorbent. RSC Adv. 2012;2:8381–8389. doi: 10.1039/c2ra21351f. DOI
Vinuth M., Naik H.S.B. Rapid Removal of Hazardous Rose Bengal Dye Using Fe(III)– Montmorillonite as an Effective Adsorbent in Aqueous Solution. J. Environ. Anal. Toxicol. 2016;06 doi: 10.4172/2161-0525.1000355. DOI
Dimapilis E.A.S., Hsu C.-S., Mendoza R.M.O., Lu M.-C. Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 2018;28:47–56. doi: 10.1016/j.serj.2017.10.001. DOI
Chakra C.H.S., Rajendar V., Rao K.V., Kumar M. Enhanced antimicrobial and anticancer properties of ZnO and TiO2 nanocomposites. 3 Biotech. 2017;7:89. doi: 10.1007/s13205-017-0731-8. PubMed DOI PMC
Tiwari V., Mishra N., Gadani K., Solanki P.S., Shah N.A., Tiwari M. Mechanism of Anti-bacterial Activity of Zinc Oxide Nanoparticle Against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.01218. PubMed DOI PMC