Development of ZnO Nanoflake Type Structures Using Silk Fibres as Template for Water Pollutants Remediation

. 2020 May 18 ; 12 (5) : . [epub] 20200518

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32443444

Grantová podpora
NanoEnviCz, under Project No. LM2018124 Ministry of Education, Youth and Sports in the Czech Republic
HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843 Ministry of Education, Youth and Sports of the Czech Republic and European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education.

We have fabricated ZnO nanoflake structures using degummed silk fibers as templates, via soaking and calcining the silk fibers bearing ZnO nanoparticles at 150 °C for 6 h. The obtained ZnO nanostructures were characterized using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and UV-vis and fluorescence spectroscopic analysis. The size (~500-700 nm) in length and thicknesses (~60 nm) of ZnO nanoflakes were produced. The catalysis performances of ZnO nanoflakes on silk fibers (ZnSk) via photo-degradation of naphthalene (93% in 256 min), as well as Rose Bengal dye removal (~1.7 mM g-1) through adsorption from aqueous solution, were practically observed. Further, ZnSk displayed superb antibacterial activity against the tested model gram-negative Escherichia coli bacterium. The produced ZnSk has huge scope to be used for real-world water contaminants remediation applications.

Zobrazit více v PubMed

Park K.-H., Han G.D., Neoh K.C., Kim T.-S., Shim J.H., Park H.-D. Antibacterial activity of the thin ZnO film formed by atomic layer deposition under UV-A light. Chem. Eng. J. 2017;328:988–996. doi: 10.1016/j.cej.2017.07.112. DOI

Lian X., Li Y., An D., Zou Y., Wang Q., Zhang N. Synthesis of porous ZnO nanostructures using bamboo fibers as templates. Mater. Sci.-Pol. 2014;32:514–520. doi: 10.2478/s13536-014-0225-x. DOI

Umar A., Hahn Y.-B., editors. Metal Oxide Nanostructures and Their Applications. American Scientific Publ.; Los Angeles, CA, USA: 2010. Nanotechnology book series.

Khin M.M., Nair A.S., Babu V.J., Murugan R., Ramakrishna S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012;5:8075–8109. doi: 10.1039/c2ee21818f. DOI

Samadi M., Zirak M., Naseri A., Kheirabadi M., Ebrahimi M., Moshfegh A.Z. Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: A review. Res. Chem. Intermed. 2019;45:2197–2254. doi: 10.1007/s11164-018-03729-5. DOI

Szatkowski T., Siwińska-Stefańska K., Wysokowski M., Stelling A.L., Joseph Y., Ehrlich H., Jesionowski T. Immobilization of Titanium(IV) Oxide onto 3D Spongin Scaffolds of Marine Sponge Origin According to Extreme Biomimetics Principles for Removal of C.I. Basic Blue 9. Biomimetics. 2017;2:4. doi: 10.3390/biomimetics2020004. PubMed DOI PMC

Unterlass M.M. Geomimetics and Extreme Biomimetics Inspired by Hydrothermal Systems—What Can We Learn from Nature for Materials Synthesis? Biomimetics. 2017;2:8. doi: 10.3390/biomimetics2020008. PubMed DOI PMC

Ehrlich H., editor. Extreme Biomimetics. Springer International Publishing; Cham, Switzerland: 2017.

Wysokowski M., Motylenko M., Beyer J., Makarova A., Stöcker H., Walter J., Galli R., Kaiser S., Vyalikh D., Bazhenov V.V., et al. Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Res. 2015;8:2288–2301. doi: 10.1007/s12274-015-0739-5. DOI

Wysokowski M., Motylenko M., Stöcker H., Bazhenov V.V., Langer E., Dobrowolska A., Czaczyk K., Galli R., Stelling A.L., Behm T., et al. An extreme biomimetic approach: Hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J. Mater. Chem. B. 2013;1:6469–6476. doi: 10.1039/c3tb21186j. PubMed DOI

Hongfeng L., Jia L., Jun W. Synthesis of Biomorphic ZnO Using Cotton as the Biotemplate. Mater. Rev. 2008:S3

Han J., Su H., Xu J., Song W., Gu Y., Chen Y., Moon W.-J., Zhang D. Silk-mediated synthesis and modification of photoluminescent ZnO nanoparticles. J. Nanopart. Res. 2012;14:726. doi: 10.1007/s11051-012-0726-7. DOI

Shubha P., Gowda M.L., Namratha K., Shyamsunder S., Manjunatha H.B., Byrappa K. Ex-situ fabrication of ZnO nanoparticles coated silk fiber for surgical applications. Mater. Chem. Phys. 2019;231:21–26. doi: 10.1016/j.matchemphys.2019.04.012. DOI

Gulrajani M.L., Gupta D., Periyasamy S., Muthu S.G. Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. J. Appl. Polym. Sci. 2008;108:614–623. doi: 10.1002/app.27584. DOI

Gore P.M., Naebe M., Wang X., Kandasubramanian B. Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chem. Eng. J. 2019;374:437–470. doi: 10.1016/j.cej.2019.05.163. DOI

Zheng K., Zhong J., Qi Z., Ling S., Kaplan D.L. Isolation of Silk Mesostructures for Electronic and Environmental Applications. Adv. Funct. Mater. 2018;28:1806380. doi: 10.1002/adfm.201806380. DOI

Tomczak M.M., Gupta M.K., Drummy L.F., Rozenzhak S.M., Naik R.R. Morphological control and assembly of zinc oxide using a biotemplate. Acta Biomater. 2009;5:876–882. doi: 10.1016/j.actbio.2008.11.011. PubMed DOI

Bertilsson S., Widenfalk A. Photochemical degradation of PAHs in freshwaters and their impact on bacterial growth–influence of water chemistry. Hydrobiologia. 2002;469:23–32. doi: 10.1023/A:1015579628189. DOI

Naushad M., Al Othman Z.A., Awual M.R., Alfadul S.M., Ahamad T. Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: Kinetics, isotherms, and thermodynamic studies. Desalin. Water Treat. 2016;57:13527–13533. doi: 10.1080/19443994.2015.1060169. DOI

Cai L., Shao H., Hu X., Zhang Y. Reinforced and Ultraviolet Resistant Silks from Silkworms Fed with Titanium Dioxide Nanoparticles. ACS Sustain. Chem. Eng. 2015;3:2551–2557. doi: 10.1021/acssuschemeng.5b00749. DOI

Djelloul A., Bouzid K., Guerrab F. Role of Substrate Temperature on the Structural and Morphological Properties of ZnO Thin Films Deposited by Ultrasonic Spray Pyrolysis. Turk. J. Phys. 2008;32:49–58.

Silvestri D., Mikšíček J., Wacławek S., Torres-Mendieta R., Padil V.V.T., Černík M. Production of electrospun nanofibers based on graphene oxide/gum Arabic. Int. J. Biol. Macromol. 2019;124:396–402. doi: 10.1016/j.ijbiomac.2018.11.243. PubMed DOI

Cao T.-T., Zhang Y.-Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;61:940–952. doi: 10.1016/j.msec.2015.12.082. PubMed DOI

Dong Q., Su H., Zhang D. In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. J. Phys. Chem. B. 2005;109:17429–17434. doi: 10.1021/jp052826z. PubMed DOI

Zhang H., Li L.-L., Dai F.-Y., Zhang H.-H., Ni B., Zhou W., Yang X., Wu Y.-Z. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. J. Transl. Med. 2012;10:117. doi: 10.1186/1479-5876-10-117. PubMed DOI PMC

Koutu V., Shastri L., Malik M.M. Effect of NaOH concentration on optical properties of zinc oxide nanoparticles. Mater. Sci.-Pol. 2016;34:819–827. doi: 10.1515/msp-2016-0119. DOI

Khaghanpour Z., Naghibi S. Perforated ZnO nanoflakes as a new feature of ZnO achieved by the hydrothermal-assisted sol–gel technique. J. Nanostructure Chem. 2017;7:55–59. doi: 10.1007/s40097-017-0215-8. DOI

Assi N. Synthesis of ZnO-nanoparticles by microwave assisted sol-gel method and its role in photocatalytic degradation of food dye Tartrazine (Acid Yellow 23) Int. J. Nano Dimens. 2017;8:241–249.

Hammad T.M., Salem J.K., Harrison R.G. Synthesis, Characterizaton, and Optical Properties of Y-Doped ZnO Nanaoparticles. Nano. 2009;4:225–232. doi: 10.1142/S1793292009001691. DOI

Liqiang J., Yichun Q., Baiqi W., Shudan L., Baojiang J., Libin Y., Wei F., Honggang F., Jiazhong S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells. 2006;90:1773–1787. doi: 10.1016/j.solmat.2005.11.007. DOI

Lair A., Ferronato C., Chovelon J.-M., Herrmann J.-M. Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions. J. Photochem. Photobiol. Chem. 2008;193:193–203. doi: 10.1016/j.jphotochem.2007.06.025. DOI

Jing L., Chen B., Zhang B., Zheng J., Liu B. Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration. Mar. Pollut. Bull. 2014;81:149–156. doi: 10.1016/j.marpolbul.2014.02.003. PubMed DOI

Xu F., Yuan Z.-Y., Du G.-H., Ren T.-Z., Bouvy C., Halasa M., Su B.-L. Simple approach to highly oriented ZnO nanowire arrays: Large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology. 2006;17:588–594. doi: 10.1088/0957-4484/17/2/041. DOI

Singh P., Mondal K., Sharma A. Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J. Colloid Interface Sci. 2013;394:208–215. doi: 10.1016/j.jcis.2012.12.006. PubMed DOI

Chakraborty J.N. 15-Dyeing with acid dye. In: Chakraborty J.N., editor. Fundamentals and Practices in Colouration of Textiles. Woodhead Publishing India; New Delhi, Indian: 2014. pp. 177–186.

Kumar Gupta V., Mittal A., Jhare D., Mittal J. Batch and bulk removal of hazardous colouring agent Rose Bengal by adsorption techniques using bottom ash as adsorbent. RSC Adv. 2012;2:8381–8389. doi: 10.1039/c2ra21351f. DOI

Vinuth M., Naik H.S.B. Rapid Removal of Hazardous Rose Bengal Dye Using Fe(III)– Montmorillonite as an Effective Adsorbent in Aqueous Solution. J. Environ. Anal. Toxicol. 2016;06 doi: 10.4172/2161-0525.1000355. DOI

Dimapilis E.A.S., Hsu C.-S., Mendoza R.M.O., Lu M.-C. Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 2018;28:47–56. doi: 10.1016/j.serj.2017.10.001. DOI

Chakra C.H.S., Rajendar V., Rao K.V., Kumar M. Enhanced antimicrobial and anticancer properties of ZnO and TiO2 nanocomposites. 3 Biotech. 2017;7:89. doi: 10.1007/s13205-017-0731-8. PubMed DOI PMC

Tiwari V., Mishra N., Gadani K., Solanki P.S., Shah N.A., Tiwari M. Mechanism of Anti-bacterial Activity of Zinc Oxide Nanoparticle Against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.01218. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...