Enhanced photon emission from a double-layer target at moderate laser intensities
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
32483271
PubMed Central
PMC7264226
DOI
10.1038/s41598-020-65778-4
PII: 10.1038/s41598-020-65778-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this paper we study photon emission in the interaction of the laser beam with an under-dense target and the attached reflecting plasma mirror. Photons are emitted due to the inverse Compton scattering when accelerated electrons interact with a reflected part of the laser pulse. The enhancement of photon generation in this configuration lies in using the laser pulse with a steep rising edge. Such a laser pulse can be obtained by the preceding interaction of the incoming laser pulse with a thin solid-density foil. Using numerical simulations we study how such a laser pulse affects photon emission. As a result of employing a laser pulse with a steep rising edge, accelerated electrons can interact directly with the most intense part of the laser pulse that enhances photon emission. This approach increases the number of created photons and improves photon beam divergence.
Institute of Physics of the CAS ELI Beamlines Project Na Slovance 2 Prague 182 21 Czech Republic
Institute of Plasma Physics of the CAS Za Slovankou 1782 3 Prague 182 00 Czech Republic
School of Science Xi'an Jiaotong University Xi'an 710049 China
Zobrazit více v PubMed
Gonsalves AJ, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122:084801. PubMed
Cole JM, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X. 2018;8:011020.
Poder K, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X. 2018;8:031004.
Shvets G. Gamma-rays going cheap. Nature Physics. 2011;7:834–835.
Phuoc KT, et al. All-optical compton gamma-ray source. Nature Photonics. 2012;6:308–311.
Ritus VI. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. Journal of Soviet Laser Research. 1985;6:497–617.
Sauter F. Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Zeitschrift für Physik. 1931;69:742–764.
Schwinger J. On gauge invariance and vacuum polarization. Physical Review. 1951;82:664–679.
Bulanov SS, Schroeder CB, Esarey E, Leemans WP. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses. Phys. Rev. A. 2013;87:062110.
Tajima T, Dawson JM. Laser electron accelerator. Phys. Rev. Lett. 1979;43:267–270.
Pukhov A, Sheng Z-M, Meyer-ter-Vehn J. Particle acceleration in relativistic laser channels. Physics of Plasmas. 1999;6:2847–2854.
Gahn C, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Physical Review Letters. 1999;83:4772–4775.
Pukhov A. Strong field interaction of laser radiation. Reports on Progress in Physics. 2002;66:47–101.
Shaw JL, et al. Role of direct laser acceleration in energy gained by electrons in a laser wakefield accelerator with ionization injection. Plasma Physics and Controlled Fusion. 2014;56:084006.
Bahk S-W, et al. Generation and characterization of the highest laser intensities (1022 W/cm2) Optics Letters. 2004;29:2837. PubMed
Yanovsky V, et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Optics Express. 2008;16:2109. PubMed
Pirozhkov AS, et al. Approaching the diffraction-limited, bandwidth-limited petawatt. Opt. Express. 2017;25:20486–20501. PubMed
Yu C, et al. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering. Scientific Reports. 2016;6:29518. PubMed PMC
Gu Y-J, Klimo O, Bulanov SV, Weber S. Brilliant gamma-ray beam and electron–positron pair production by enhanced attosecond pulses. Communications Physics. 2018;1:93.
Gong Z, et al. Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime. Plasma Physics and Controlled Fusion. 2018;60:044004.
Gu Y-J, Weber S. Intense, directional and tunable γ-ray emission via relativistic oscillating plasma mirror. Optics Express. 2018;26:19932–19939. PubMed
Huang TW, et al. Tabletop laser-driven gamma-ray source with nanostructured double-layer target. Plasma Physics and Controlled Fusion. 2018;60:115006.
Huang TW, et al. Highly efficient laser-driven Compton gamma-ray source. New Journal of Physics. 2019;21:013008.
Liu J, et al. Generation of bright γ-ray/hard x-ray flash with intense femtosecond pulses and double-layer targets. Physics of Plasmas. 2019;26:033109.
Long TY, et al. All-optical generation of petawatt gamma radiation via inverse Compton scattering from laser interaction with tube target. Plasma Physics and Controlled Fusion. 2019;61:085002.
Ong JF, Seto K, Berceanu AC, Aogaki S, Neagu L. Feasibility studies of an all-optical and compact gamma-ray blaster using a 1 PW laser pulse. Plasma Physics and Controlled Fusion. 2019;61:084009.
Gu Y-J, Jirka M, Klimo O, Weber S. Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations. Matter and Radiation at Extremes. 2019;4:064403.
Reed SA, et al. Relativistic plasma shutter for ultraintense laser pulses. Applied Physics Letters. 2009;94:201117. PubMed PMC
Ridgers C, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions. Journal of Computational Physics. 2014;260:273–285.
Arber TD, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion. 2015;57:113001.
Vshivkov VA, Naumova NM, Pegoraro F, Bulanov SV. Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Physics of Plasmas. 1998;5:2727–2741.
Palaniyappan S, et al. Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas. Nature Physics. 2012;8:763–769.
Wei WQ, et al. Plasma optical shutter in ultraintense laser-foil interaction. Physics of Plasmas. 2017;24:113111.
Qu K, Fisch NJ. Laser pulse sharpening with electromagnetically induced transparency in plasma. Physics of Plasmas. 2017;24:073108.
Henig A, et al. Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 2009;103:045002. PubMed
Ma W, et al. Preparation of self-supporting diamond-like carbon nanofoils with thickness less than 5 nm for laser-driven ion acceleration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011;655:53–56.
Bell AR, Kirk JG. Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 2008;101:200403. PubMed
Sun G-Z, Ott E, Lee YC, Guzdar P. Self-focusing of short intense pulses in plasmas. Physics of Fluids. 1987;30:526.
Mourou GA, Tajima T, Bulanov SV. Optics in the relativistic regime. Reviews of Modern Physics. 2006;78:309–371.
Bin JH, et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas. Phys. Rev. Lett. 2015;115:064801. PubMed
Huang TW, et al. Characteristics of betatron radiation from direct-laser-accelerated electrons. Phys. Rev. E. 2016;93:063203. PubMed
Qiao B, Chang HX, Xie Y, Xu Z, He XT. Gamma-ray generation from laser-driven electron resonant acceleration: In the non-QED and the QED regimes. Physics of Plasmas. 2017;24:123101.
Ma WJ, et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil. Phys. Rev. Lett. 2019;122:014803. PubMed
Vranic M, Martins JL, Vieira J, Fonseca RA, Silva LO. All-optical radiation reaction at 1021 W/cm2. Phys. Rev. Lett. 2014;113:134801. PubMed
Feng J, et al. Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons. Physics of Plasmas. 2017;24:093110.
Ji LL, Snyder J, Shen BF. Single-pulse laser-electron collision within a micro-channel plasma target. Plasma Physics and Controlled Fusion. 2019;61:065019.