Generation and characterization of Aldh3-Cre transgenic mice as a tool for conditional gene deletion in postnatal cornea

. 2020 Jun 03 ; 10 (1) : 9083. [epub] 20200603

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32493941
Odkazy

PubMed 32493941
PubMed Central PMC7270111
DOI 10.1038/s41598-020-65878-1
PII: 10.1038/s41598-020-65878-1
Knihovny.cz E-zdroje

Conditional gene targeting in mice by means of Cre-loxP strategy represents a powerful approach to study mammalian gene function. This approach is however dependent on the availability of suitable strains of mice with a tissue or time restricted activity of the Cre recombinase. Here we describe Aldh3-Cre transgenic mice as a useful tool to conditionally delete genes in cornea, a specialized transparent tissue found on the anterior-most part of the eye, which acts as a protective barrier and contributes to the refractive power. Using a set of floxed alleles we demonstrate high Aldh3-Cre activity in corneal epithelial cells, corneal stroma and conjunctival epithelial cells at postnatal stages. Aldh3-Cre will thus be particularly beneficial for functional analysis of genes which are vital for postnatal development of cornea and conjunctiva.

Zobrazit více v PubMed

Zieske JD. Corneal development associated with eyelid opening. Int. J. Dev. Biol. 2004;48:903–911. doi: 10.1387/ijdb.041860jz. PubMed DOI

Hay ED. Development of the vertebrate cornea. Int. Rev. Cytol. 1980;63:263–322. doi: 10.1016/s0074-7696(08)61760-x. PubMed DOI

Pei YF, Rhodin JA. Electron microscopic study of the development of the mouse corneal epithelium. Invest. Ophthalmol. 1971;10:811–825. PubMed

Haustein J. On the ultrastructure of the developing and adult mouse corneal stroma. Anat. Embryol. 1983;168:291–305. doi: 10.1007/bf00315823. PubMed DOI

Collinson JM, et al. Clonal analysis of patterns of growth, stem cell activity, and cell movement during the development and maintenance of the murine corneal epithelium. Dev. Dyn. 2002;224:432–440. doi: 10.1002/dvdy.10124. PubMed DOI

Nagasaki T, Zhao J. Centripetal movement of corneal epithelial cells in the normal adult mouse. Invest. Ophthalmol. Vis. Sci. 2003;44:558–566. doi: 10.1167/iovs.02-0705. PubMed DOI

Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989;57:201–209. doi: 10.1016/0092-8674(89)90958-6. PubMed DOI

Klintworth GK. The molecular genetics of the corneal dystrophies–current status. Front. Biosci. 2003;8:d687–713. doi: 10.2741/1018. PubMed DOI

Hogan BL, et al. Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morphol. 1986;97:95–110. PubMed

Hill RE, et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991;354:522–525. doi: 10.1038/354522a0. PubMed DOI

Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994;265:103–106. doi: 10.1126/science.8016642. PubMed DOI

Gu H, Zou YR, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell. 1993;73:1155–1164. doi: 10.1016/0092-8674(93)90644-6. PubMed DOI

Swamynathan SK, et al. Conditional deletion of the mouse Klf4 gene results in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells. Mol. Cell Biol. 2007;27:182–194. doi: 10.1128/MCB.00846-06. PubMed DOI PMC

Lu H, Lu Q, Zheng Y, Li Q. Notch signaling promotes the corneal epithelium wound healing. Mol. Vis. 2012;18:403–411. PubMed PMC

Kokado M, et al. Lack of plakoglobin impairs integrity and wound healing in corneal epithelium in mice. Lab. Invest. 2018;98:1375–1383. doi: 10.1038/s41374-018-0082-z. PubMed DOI

Tanifuji-Terai N, Terai K, Hayashi Y, Chikama T, Kao WW. Expression of keratin 12 and maturation of corneal epithelium during development and postnatal growth. Invest. Ophthalmol. Vis. Sci. 2006;47:545–551. doi: 10.1167/iovs.05-1182. PubMed DOI

Weng DY, et al. Promiscuous recombination of LoxP alleles during gametogenesis in cornea Cre driver mice. Mol. Vis. 2008;14:562–571. PubMed PMC

Joo JH, Kim YH, Dunn NW, Sugrue SP. Disruption of mouse corneal epithelial differentiation by conditional inactivation of pnn. Invest. Ophthalmol. Vis. Sci. 2010;51:1927–1934. doi: 10.1167/iovs.09-4591. PubMed DOI PMC

Abedinia M, Pain T, Algar EM, Holmes RS. Bovine corneal aldehyde dehydrogenase: the major soluble corneal protein with a possible dual protective role for the eye. Exp. Eye Res. 1990;51:419–426. doi: 10.1016/0014-4835(90)90154-m. PubMed DOI

Pappa A, Sophos NA, Vasiliou V. Corneal and stomach expression of aldehyde dehydrogenases: from fish to mammals. Chem. Biol. Interact. 2001;130-132:181–191. doi: 10.1016/s0009-2797(00)00233-7. PubMed DOI

Chen Y, Thompson DC, Koppaka V, Jester JV, Vasiliou V. Ocular aldehyde dehydrogenases: protection against ultraviolet damage and maintenance of transparency for vision. Prog. Retin. Eye Res. 2013;33:28–39. doi: 10.1016/j.preteyeres.2012.10.001. PubMed DOI PMC

Davis J, Davis D, Norman B, Piatigorsky J. Gene expression of the mouse corneal crystallin Aldh3a1: activation by Pax6, Oct1, and p300. Invest. Ophthalmol. Vis. Sci. 2008;49:1814–1826. doi: 10.1167/iovs.07-1057. PubMed DOI

Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 1999;21:70–71. doi: 10.1038/5007. PubMed DOI

Kays WT, Piatigorsky J. Aldehyde dehydrogenase class 3 expression: identification of a cornea-preferred gene promoter in transgenic mice. Proc. Natl Acad. Sci. USA. 1997;94:13594–13599. doi: 10.1073/pnas.94.25.13594. PubMed DOI PMC

Harada N, et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J. 1999;18:5931–5942. doi: 10.1093/emboj/18.21.5931. PubMed DOI PMC

Zhang Y, et al. Aberrant expression of a beta-catenin gain-of-function mutant induces hyperplastic transformation in the mouse cornea. J. Cell Sci. 2010;123:1285–1294. doi: 10.1242/jcs.063321. PubMed DOI PMC

Zhang L, et al. Aberrant expression of a stabilized beta-catenin mutant in keratocytes inhibits mouse corneal epithelial stratification. Sci. Rep. 2019;9:1919. doi: 10.1038/s41598-018-36392-2. PubMed DOI PMC

Brault V, et al. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development. 2001;128:1253–1264. PubMed

Zhang Y, et al. Wnt/beta-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development. Development. 2015;142:3383–3393. doi: 10.1242/dev.125393. PubMed DOI PMC

Norman B, Davis J, Piatigorsky J. Postnatal gene expression in the normal mouse cornea by SAGE. Invest. Ophthalmol. Vis. Sci. 2004;45:429–440. doi: 10.1167/iovs.03-0449. PubMed DOI

Lee EC, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics. 2001;73:56–65. doi: 10.1006/geno.2000.6451. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...