Inhibition of Fatty Acid Oxidation as a New Target To Treat Primary Amoebic Meningoencephalitis

. 2020 Jul 22 ; 64 (8) : . [epub] 20200722

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32513800

Primary amoebic meningoencephalitis (PAM) is a rapidly fatal infection caused by the free-living amoeba Naegleria fowleri The amoeba migrates along the olfactory nerve to the brain, resulting in seizures, coma, and, eventually, death. Previous research has shown that Naegleria gruberi, a close relative of N. fowleri, prefers lipids over glucose as an energy source. Therefore, we tested several already-approved inhibitors of fatty acid oxidation alongside the currently used drugs amphotericin B and miltefosine. Our data demonstrate that etomoxir, orlistat, perhexiline, thioridazine, and valproic acid inhibited growth of N. gruberi We then tested these compounds on N. fowleri and found etomoxir, perhexiline, and thioridazine to be effective growth inhibitors. Hence, not only are lipids the preferred food source for N. gruberi, but also oxidation of fatty acids seems to be essential for growth of N. fowleri Inhibition of fatty acid oxidation could result in new treatment options, as thioridazine inhibits N. fowleri growth in concentrations that can be reached at the site of infection. It could also potentiate currently used therapy, as checkerboard assays revealed synergy between miltefosine and etomoxir. Animal testing should be performed to confirm the added value of these inhibitors. Although the development of new drugs and randomized controlled trials for this rare disease are nearly impossible, inhibition of fatty acid oxidation seems a promising strategy as we showed effectivity of several drugs that are or have been in use and that thus could be repurposed to treat PAM in the future.

Zobrazit více v PubMed

Cope JR, Ali IK. 2016. Primary amebic meningoencephalitis: what have we learned in the last 5 years? Curr Infect Dis Rep 18:31. doi:10.1007/s11908-016-0539-4. PubMed DOI PMC

Grace E, Asbill S, Virga K. 2015. Naegleria fowleri: pathogenesis, diagnosis, and treatment options. Antimicrob Agents Chemother 59:6677–6681. doi:10.1128/AAC.01293-15. PubMed DOI PMC

Siddiqui R, Ali IKM, Cope JR, Khan NA. 2016. Biology and pathogenesis of Naegleria fowleri. Acta Trop 164:375–394. doi:10.1016/j.actatropica.2016.09.009. PubMed DOI

De Jonckheere JF. 2011. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infect Genet Evol 11:1520–1528. doi:10.1016/j.meegid.2011.07.023. PubMed DOI

Cope JR, Murphy J, Kahler A, Gorbett DG, Ali I, Taylor B, Corbitt L, Roy S, Lee N, Roellig D, Brewer S, Hill VR. 2018. Primary amebic meningoencephalitis associated with rafting on an artificial whitewater river: case report and environmental investigation. Clin Infect Dis 66:548–553. doi:10.1093/cid/cix810. PubMed DOI PMC

Stowe RC, Pehlivan D, Friederich KE, Lopez MA, DiCarlo SM, Boerwinkle VL. 2017. Primary amebic meningoencephalitis in children: a report of two fatal cases and review of the literature. Pediatr Neurol 70:75–79. doi:10.1016/j.pediatrneurol.2017.02.004. PubMed DOI

Maciver SK, Piñero JE, Lorenzo-Morales J. 2020. Is Naegleria fowleri an emerging parasite? Trends Parasitol 36:19–28. doi:10.1016/j.pt.2019.10.008. PubMed DOI

Shakoor S, Beg MA, Mahmood SF, Bandea R, Sriram R, Noman F, Ali F, Visvesvara GS, Zafar A. 2011. Primary amebic meningoencephalitis caused by Naegleria fowleri, Karachi, Pakistan. Emerg Infect Dis 17:258–261. doi:10.3201/eid1702.100442. PubMed DOI PMC

Jarolim KL, McCosh JK, Howard MJ, John DT. 2000. A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice. J Parasitol 86:50–55. doi:10.1645/0022-3395(2000)086[0050:ALMSOT]2.0.CO;2. PubMed DOI

Kemble SK, Lynfield R, DeVries AS, Drehner DM, Pomputius WF III, Beach MJ, Visvesvara GS, da Silva AJ, Hill VR, Yoder JS, Xiao L, Smith KE, Danila R. 2012. Fatal Naegleria fowleri infection acquired in Minnesota: possible expanded range of a deadly thermophilic organism. Clin Infect Dis 54:805–809. doi:10.1093/cid/cir961. PubMed DOI

Nau R, Sorgel F, Eiffert H. 2010. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 23:858–883. doi:10.1128/CMR.00007-10. PubMed DOI PMC

Roy SL, Atkins JT, Gennuso R, Kofos D, Sriram RR, Dorlo TP, Hayes T, Qvarnstrom Y, Kucerova Z, Guglielmo BJ, Visvesvara GS. 2015. Assessment of blood-brain barrier penetration of miltefosine used to treat a fatal case of granulomatous amebic encephalitis possibly caused by an unusual Balamuthia mandrillaris strain. Parasitol Res 114:4431–4439. doi:10.1007/s00436-015-4684-8. PubMed DOI PMC

Monogue ML, Watson D, Alexander JS, Cavuoti D, Doyle LM, Wang MZ, Prokesch BC. 2019. Minimal cerebrospinal concentration of miltefosine despite therapeutic plasma levels during the treatment of amebic encephalitis. Antimicrob Agents Chemother 64. doi:10.1128/AAC.01127-19. PubMed DOI PMC

Vogelsinger H, Weiler S, Djanani A, Kountchev J, Bellmann-Weiler R, Wiedermann CJ, Bellmann R. 2006. Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. J Antimicrob Chemother 57:1153–1160. doi:10.1093/jac/dkl141. PubMed DOI

Martinez-Castillo M, Cardenas-Zuniga R, Coronado-Velazquez D, Debnath A, Serrano-Luna J, Shibayama M. 2016. Naegleria fowleri after 50 years: is it a neglected pathogen? J Med Microbiol 65. doi:10.1099/jmm.0.000303. PubMed DOI PMC

Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. 2004. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov 3:509–520. doi:10.1038/nrd1416. PubMed DOI

Horn D, Duraisingh MT. 2014. Antiparasitic chemotherapy: from genomes to mechanisms. Annu Rev Pharmacol Toxicol 54:71–94. doi:10.1146/annurev-pharmtox-011613-135915. PubMed DOI PMC

Shakya A, Bhat HR, Ghosh SK. 2018. Update on nitazoxanide: a multifunctional chemotherapeutic agent. Curr Drug Discov Technol 15:201–213. doi:10.2174/1570163814666170727130003. PubMed DOI

Bexkens ML, Zimorski V, Sarink MJ, Wienk H, Brouwers JF, De Jonckheere JF, Martin WF, Opperdoes FR, van Hellemond JJ, Tielens A. 2018. Lipids are the preferred substrate of the protist Naegleria gruberi, relative of a human brain pathogen. Cell Rep 25:537–543.e533. doi:10.1016/j.celrep.2018.09.055. PubMed DOI PMC

Debnath A, Tunac JB, Galindo-Gomez S, Silva-Olivares A, Shibayama M, McKerrow JH. 2012. Corifungin, a new drug lead against Naegleria, identified from a high-throughput screen. Antimicrob Agents Chemother 56:5450–5457. doi:10.1128/AAC.00643-12. PubMed DOI PMC

Kim JH, Jung SY, Lee YJ, Song KJ, Kwon D, Kim K, Park S, Im KI, Shin HJ. 2008. Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri. Antimicrob Agents Chemother 52:4010–4016. doi:10.1128/AAC.00197-08. PubMed DOI PMC

Colon BL, Rice CA, Guy RK, Kyle DE. 2019. Phenotypic screens reveal posaconazole as a rapidly acting amebicidal combination partner for treatment of primary amoebic meningoencephalitis. J Infect Dis 219:1095–1103. doi:10.1093/infdis/jiy622. PubMed DOI PMC

Kangussu-Marcolino MM, Ehrenkaufer GM, Chen E, Debnath A, Singh U. 2019. Identification of plicamycin, TG02, panobinostat, lestaurtinib, and GDC-0084 as promising compounds for the treatment of central nervous system infections caused by the free-living amebae Naegleria, Acanthamoeba and Balamuthia. Int J Parasitol Drugs Drug Resist 11:80–94. doi:10.1016/j.ijpddr.2019.10.003. PubMed DOI PMC

Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, Morgan MJ, Tsaousis AD, Velle K, Vargová R, Rodrigo Najle S, MacIntyre G, Muller N, Wittwer M, Zysset-Burri DC, Elias M, Slamovits C, Weirauch M, Fritz-Laylin L, Marciano-Cabral F, Puzon GJ, Walsh T, Chiu C, Dacks JB. 2020. A comparative ‘omics approach to candidate pathogenicity factor discovery in the brain-eating amoeba Naegleria fowleri. bioRxiv 10.1101/2020.01.16.908186. DOI

Shi R, Zhang Y, Shi Y, Shi S, Jiang L. 2012. Inhibition of peroxisomal beta-oxidation by thioridazine increases the amount of VLCFAs and Abeta generation in the rat brain. Neurosci Lett 528:6–10. doi:10.1016/j.neulet.2012.08.086. PubMed DOI

Van den Branden C, Roels F. 1985. Thioridazine: a selective inhibitor of peroxisomal beta-oxidation in vivo. FEBS Lett 187:331–333. doi:10.1016/0014-5793(85)81270-9. PubMed DOI

Hadvary P, Lengsfeld H, Wolfer H. 1988. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem J 256:357–361. doi:10.1042/bj2560357. PubMed DOI PMC

Kennedy JA, Unger SA, Horowitz JD. 1996. Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem Pharmacol 52:273–280. doi:10.1016/0006-2952(96)00204-3. PubMed DOI

Weis BC, Cowan AT, Brown N, Foster DW, McGarry JD. 1994. Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. Evidence that the dominant cardiac CPT I isoform is identical to the skeletal muscle enzyme. J Biol Chem 269:26443–26448. PubMed

Silva MF, Aires CC, Luis PB, Ruiter JP, IJlst L, Duran M, Wanders RJ, Tavares de Almeida I. 2008. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis 31:205–216. doi:10.1007/s10545-008-0841-x. PubMed DOI

Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC. 2010. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140:631–642. doi:10.1016/j.cell.2010.01.032. PubMed DOI

Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, Gottstein B, Wittwer M. 2014. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics 15:496–496. doi:10.1186/1471-2164-15-496. PubMed DOI PMC

Pijpers J, den Boer ML, Essink DR, Ritmeijer K. 2019. The safety and efficacy of miltefosine in the long-term treatment of post-kala-azar dermal leishmaniasis in South Asia - a review and meta-analysis. PLoS Negl Trop Dis 13:e0007173. doi:10.1371/journal.pntd.0007173. PubMed DOI PMC

Cheng S, Wang G, Wang Y, Cai L, Qian K, Ju L, Liu X, Xiao Y, Wang X. 2019. Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARγ-mediated pathway in bladder cancer. Clin Sci (Lond) 133:1745–1758. doi:10.1042/CS20190587. PubMed DOI

Baig MS, Roy A, Saqib U, Rajpoot S, Srivastava M, Naim A, Liu D, Saluja R, Faisal SM, Pan Q, Turkowski K, Darwhekar GN, Savai R. 2018. Repurposing thioridazine (TDZ) as an anti-inflammatory agent. Sci Rep 8:12471. doi:10.1038/s41598-018-30763-5. PubMed DOI PMC

Wassmann CS, Lund LC, Thorsing M, Lauritzen SP, Kolmos HJ, Kallipolitis BH, Klitgaard JK. 2018. Molecular mechanisms of thioridazine resistance in Staphylococcus aureus. PLoS One 13:e0201767. doi:10.1371/journal.pone.0201767. PubMed DOI PMC

Aslostovar L, Boyd AL, Almakadi M, Collins TJ, Leong DP, Tirona RG, Kim RB, Julian JA, Xenocostas A, Leber B, Levine MN, Foley R, Bhatia M. 2018. A phase 1 trial evaluating thioridazine in combination with cytarabine in patients with acute myeloid leukemia. Blood Adv 2:1935–1945. doi:10.1182/bloodadvances.2018015677. PubMed DOI PMC

Varga B, Csonka A, Csonka A, Molnar J, Amaral L, Spengler G. 2017. Possible biological and clinical applications of phenothiazines. Anticancer Res 37:5983–5993. doi:10.21873/anticanres.12045. PubMed DOI

Svendsen CN, Hrbek CC, Casendino M, Nichols RD, Bird ED. 1988. Concentration and distribution of thioridazine and metabolites in schizophrenic post-mortem brain tissue. Psychiatry Res 23:1–10. doi:10.1016/0165-1781(88)90029-7. PubMed DOI

Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M. 2019. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58. doi:10.1038/nrd.2018.168. PubMed DOI

Meletiadis J, Pournaras S, Roilides E, Walsh TJ. 2010. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob Agents Chemother 54:602–609. doi:10.1128/AAC.00999-09. PubMed DOI PMC

Di Veroli GY, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, Jodrell DI. 2016. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32:2866–2868. doi:10.1093/bioinformatics/btw230. PubMed DOI PMC

Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ. 2012. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597. doi:10.1093/jac/dks275. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...