Targeting Pharmacokinetic Drug Resistance in Acute Myeloid Leukemia Cells with CDK4/6 Inhibitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PRIMUS/20/MED/010
Univerzita Karlova v Praze
SVV/260-414
Univerzita Karlova v Praze
grant No. 20-20414Y
Grantová Agentura České Republiky
EFSA-CDN (grant No. CZ.02.1.01/0.0/0.0/16_019/0000841)
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32560251
PubMed Central
PMC7352292
DOI
10.3390/cancers12061596
PII: cancers12061596
Knihovny.cz E-zdroje
- Klíčová slova
- ABC transporters, CDK4/6 inhibitors, acute myeloid leukemia, drug resistance,
- Publikační typ
- časopisecké články MeSH
Pharmacotherapy of acute myeloid leukemia (AML) remains challenging, and the disease has one of the lowest curability rates among hematological malignancies. The therapy outcomes are often compromised by the existence of a resistant AML phenotype associated with overexpression of ABCB1 and ABCG2 transporters. Because AML induction therapy frequently consists of anthracycline-like drugs, their efficiency may also be diminished by drug biotransformation via carbonyl reducing enzymes (CRE). In this study, we investigated the modulatory potential of the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib on AML resistance using peripheral blood mononuclear cells (PBMC) isolated from patients with de novo diagnosed AML. We first confirmed inhibitory effect of the tested drugs on ABCB1 and ABCG2 in ABC transporter-expressing resistant HL-60 cells while also showing the ability to sensitize the cells to cytotoxic drugs even as no effect on AML-relevant CRE isoforms was observed. All tested CDK4/6 inhibitors elevated mitoxantrone accumulations in CD34+ PBMC and enhanced accumulation of mitoxantrone was found with abemaciclib and ribociclib in PBMC of FLT3-ITD- patients. Importantly, the accumulation rate in the presence of CDK4/6 inhibitors positively correlated with ABCB1 expression in CD34+ patients and led to enhanced apoptosis of PBMC in contrast to CD34- samples. In summary, combination therapy involving CDK4/6 inhibitors could favorably target multidrug resistance, especially when personalized based on CD34- and ABCB1-related markers.
Zobrazit více v PubMed
Daver N., Schlenk R.F., Russell N.H., Levis M.J. Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia. 2019;33:299–312. doi: 10.1038/s41375-018-0357-9. PubMed DOI PMC
Dohner H., Estey E., Grimwade D., Amadori S., Appelbaum F.R., Buchner T., Dombret H., Ebert B.L., Fenaux P., Larson R.A., et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–447. doi: 10.1182/blood-2016-08-733196. PubMed DOI PMC
Montalban-Bravo G., Garcia-Manero G. Novel drugs for older patients with acute myeloid leukemia. Leukemia. 2015;29:760–769. doi: 10.1038/leu.2014.244. PubMed DOI
NCI Cancer Stat Facts: Leukemia—Acute Myeloid Leukemia (AML) [(accessed on 23 August 2019)]; Available online: https://seer.cancer.gov/statfacts/html/amyl.html.
Pollyea D.A., Jordan C.T. Therapeutic targeting of acute myeloid leukemia stem cells. Blood. 2017;129:1627–1635. doi: 10.1182/blood-2016-10-696039. PubMed DOI
Fletcher J.I., Haber M., Henderson M.J., Norris M.D. ABC transporters in cancer: More than just drug efflux pumps. Nat. Rev. Cancer. 2010;10:147–156. doi: 10.1038/nrc2789. PubMed DOI
Robey R.W., Pluchino K.M., Hall M.D., Fojo A.T., Bates S.E., Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer. 2018;18:452–464. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC
Gottesman M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 2002;53:615–627. doi: 10.1146/annurev.med.53.082901.103929. PubMed DOI
Szakacs G., Varadi A., Ozvegy-Laczka C., Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox) Drug Discov. Today. 2008;13:379–393. doi: 10.1016/j.drudis.2007.12.010. PubMed DOI
Marzac C., Garrido E., Tang R., Fava F., Hirsch P., De Benedictis C., Corre E., Lapusan S., Lallemand J.Y., Marie J.P., et al. ATP Binding Cassette transporters associated with chemoresistance: Transcriptional profiling in extreme cohorts and their prognostic impact in a cohort of 281 acute myeloid leukemia patients. Haematologica. 2011;96:1293–1301. doi: 10.3324/haematol.2010.031823. PubMed DOI PMC
Ho M.M., Hogge D.E., Ling V. MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia. Exp. Hematol. 2008;36:433–442. doi: 10.1016/j.exphem.2007.11.014. PubMed DOI
Raaijmakers M.H., de Grouw E.P., Heuver L.H., van der Reijden B.A., Jansen J.H., Scheper R.J., Scheffer G.L., de Witte T.J., Raymakers R.A. Breast cancer resistance protein in drug resistance of primitive CD34+38- cells in acute myeloid leukemia. Clin. Cancer Res. 2005;11:2436–2444. doi: 10.1158/1078-0432.CCR-04-0212. PubMed DOI
Bartholomae S., Gruhn B., Debatin K.M., Zimmermann M., Creutzig U., Reinhardt D., Steinbach D. Coexpression of multiple ABC-transporters is strongly associated with treatment response in childhood acute myeloid leukemia. Pediatr. Blood Cancer. 2016;63:242–247. doi: 10.1002/pbc.25785. PubMed DOI
Fukuda Y., Lian S., Schuetz J.D. Leukemia and ABC transporters. Adv. Cancer Res. 2015;125:171–196. doi: 10.1016/bs.acr.2014.10.006. PubMed DOI PMC
Liu B., Li L.J., Gong X., Zhang W., Zhang H., Zhao L. Co-expression of ATP binding cassette transporters is associated with poor prognosis in acute myeloid leukemia. Oncol. Lett. 2018;15:6671–6677. doi: 10.3892/ol.2018.8095. PubMed DOI PMC
Mordente A., Meucci E., Silvestrini A., Martorana G.E., Giardina B. New developments in anthracycline-induced cardiotoxicity. Curr. Med. Chem. 2009;16:1656–1672. doi: 10.2174/092986709788186228. PubMed DOI
Skarka A., Skarydova L., Stambergova H., Wsol V. Anthracyclines and their metabolism in human liver microsomes and the participation of the new microsomal carbonyl reductase. Chem. Biol. Interact. 2011;191:66–74. doi: 10.1016/j.cbi.2010.12.016. PubMed DOI
Piska K., Koczurkiewicz P., Bucki A., Wojcik-Pszczola K., Kolaczkowski M., Pekala E. Metabolic carbonyl reduction of anthracyclines-role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents. Investig. New Drugs. 2017;35:375–385. doi: 10.1007/s10637-017-0443-2. PubMed DOI PMC
Slupe A., Williams B., Larson C., Lee L.M., Primbs T., Bruesch A.J., Bjorklund C., Warner D.L., Peloquin J., Shadle S.E., et al. Reduction of 13-deoxydoxorubicin and daunorubicinol anthraquinones by human carbonyl reductase. Cardiovasc. Toxicol. 2005;5:365–376. doi: 10.1385/CT:5:4:365. PubMed DOI
Bains O.S., Grigliatti T.A., Reid R.E., Riggs K.W. Naturally occurring variants of human aldo-keto reductases with reduced in vitro metabolism of daunorubicin and doxorubicin. J. Pharmacol. Exp. Ther. 2010;335:533–545. doi: 10.1124/jpet.110.173179. PubMed DOI
Kassner N., Huse K., Martin H.J., Godtel-Armbrust U., Metzger A., Meineke I., Brockmoller J., Klein K., Zanger U.M., Maser E., et al. Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver. Drug Metab. Dispos. 2008;36:2113–2120. doi: 10.1124/dmd.108.022251. PubMed DOI
Malatkova P., Wsol V. Carbonyl reduction pathways in drug metabolism. Drug Metab. Rev. 2014;46:96–123. doi: 10.3109/03602532.2013.853078. PubMed DOI
Bogason A., Masquelier M., Lafolie P., Skogastierna C., Paul C., Gruber A., Vitols S. Daunorubicin metabolism in leukemic cells isolated from patients with acute myeloid leukemia. Drug Metab. Lett. 2010;4:228–232. doi: 10.2174/187231210792928260. PubMed DOI
Laffin B., Petrash J.M. Expression of the aldo-ketoreductases AKR1B1 and AKR1B10 in human cancers. Front. Pharmacol. 2012;3:104. doi: 10.3389/fphar.2012.00104. PubMed DOI PMC
Penning T.M. AKR1C3 (type 5 17beta-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Mol. Cell. Endocrinol. 2019;489:82–91. doi: 10.1016/j.mce.2018.07.002. PubMed DOI PMC
Varatharajan S., Panetta J.C., Abraham A., Karathedath S., Mohanan E., Lakshmi K.M., Arthur N., Srivastava V.M., Nemani S., George B., et al. Population pharmacokinetics of Daunorubicin in adult patients with acute myeloid leukemia. Cancer Chemother. Pharmacol. 2016;78:1051–1058. doi: 10.1007/s00280-016-3166-8. PubMed DOI PMC
Verma K., Zang T., Gupta N., Penning T.M., Trippier P.C. Selective AKR1C3 inhibitors potentiate chemotherapeutic activity in multiple acute myeloid leukemia (AML) cell lines. ACS Med. Chem. Lett. 2016;7:774–779. doi: 10.1021/acsmedchemlett.6b00163. PubMed DOI PMC
Verma K., Zang T., Penning T.M., Trippier P.C. Potent and highly selective aldo-keto reductase 1C3 (AKR1C3) inhibitors act as chemotherapeutic potentiators in acute myeloid leukemia and T-Cell acute lymphoblastic leukemia. J. Med. Chem. 2019;62:3590–3616. doi: 10.1021/acs.jmedchem.9b00090. PubMed DOI PMC
De Groot A.F., Kuijpers C.J., Kroep J.R. CDK4/6 inhibition in early and metastatic breast cancer: A review. Cancer Treat. Rev. 2017;60:130–138. doi: 10.1016/j.ctrv.2017.09.003. PubMed DOI
Sorf A., Hofman J., Kucera R., Staud F., Ceckova M. Ribociclib shows potential for pharmacokinetic drug-drug interactions being a substrate of ABCB1 and potent inhibitor of ABCB1, ABCG2 and CYP450 isoforms in vitro. Biochem. Pharmacol. 2018;154:10–17. doi: 10.1016/j.bcp.2018.04.013. PubMed DOI
Wu T., Chen Z., To K.K.W., Fang X., Wang F., Cheng B., Fu L. Effect of abemaciclib (LY2835219) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Biochem. Pharmacol. 2017;124:29–42. doi: 10.1016/j.bcp.2016.10.015. PubMed DOI
Novotna E., Bukum N., Hofman J., Flaxova M., Kouklikova E., Louvarova D., Wsol V. Roscovitine and purvalanol a effectively reverse anthracycline resistance mediated by the activity of aldo-keto reductase 1C3 (AKR1C3): A promising therapeutic target for cancer treatment. Biochem. Pharmacol. 2018;156:22–31. doi: 10.1016/j.bcp.2018.08.001. PubMed DOI
Novotna E., Bukum N., Hofman J., Flaxova M., Kouklikova E., Louvarova D., Wsol V. Aldo-keto reductase 1C3 (AKR1C3): A missing piece of the puzzle in the dinaciclib interaction profile. Arch. Toxicol. 2018;92:2845–2857. doi: 10.1007/s00204-018-2258-0. PubMed DOI
Sorf A., Novotna E., Hofman J., Morell A., Staud F., Wsol V., Ceckova M. Cyclin-dependent kinase inhibitors AZD5438 and R547 show potential for enhancing efficacy of daunorubicin-based anticancer therapy: Interaction with carbonyl-reducing enzymes and ABC transporters. Biochem. Pharmacol. 2019;163:290–298. doi: 10.1016/j.bcp.2019.02.035. PubMed DOI
International Transporter Consortium. Giacomini K.M., Huang S.M., Tweedie D.J., Benet L.Z., Brouwer K.L., Chu X., Dahlin A., Evers R., Fischer V., et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010;9:215–236. doi: 10.1038/nrd3028. PubMed DOI PMC
FDA In Vitro Metabolismand TransporterMediated Drug-Drug Interaction Studies Guidance for Industry. [(accessed on 23 August 2019)]; Available online: https://www.fda.gov/media/108130/download.
Infante J.R., Cassier P.A., Gerecitano J.F., Witteveen P.O., Chugh R., Ribrag V., Chakraborty A., Matano A., Dobson J.R., Crystal A.S., et al. A phase I study of the cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin. Cancer Res. 2016;22:5696–5705. doi: 10.1158/1078-0432.CCR-16-1248. PubMed DOI PMC
Patnaik A., Rosen L.S., Tolaney S.M., Tolcher A.W., Goldman J.W., Gandhi L., Papadopoulos K.P., Beeram M., Rasco D.W., Hilton J.F., et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6:740–753. doi: 10.1158/2159-8290.CD-16-0095. PubMed DOI
Tamura K., Mukai H., Naito Y., Yonemori K., Kodaira M., Tanabe Y., Yamamoto N., Osera S., Sasaki M., Mori Y., et al. Phase I study of palbociclib, a cyclin-dependent kinase 4/6 inhibitor, in Japanese patients. Cancer Sci. 2016;107:755–763. doi: 10.1111/cas.12932. PubMed DOI PMC
Belhoussine R., Morjani H., Gillet R., Palissot V., Manfait M. Two distinct modes of oncoprotein expression during apoptosis resistance in vincristine and daunorubicin multidrug-resistant HL60 cells. Adv. Exp. Med. Biol. 1999;457:365–381. doi: 10.1007/978-1-4615-4811-9_39. PubMed DOI
Masquelier M., Zhou Q.F., Gruber A., Vitols S. Relationship between daunorubicin concentration and apoptosis induction in leukemic cells. Biochem. Pharmacol. 2004;67:1047–1056. doi: 10.1016/j.bcp.2003.10.025. PubMed DOI
Efferth T., Fabry U., Osieka R. Apoptosis and resistance to daunorubicin in human leukemic cells. Leukemia. 1997;11:1180–1186. doi: 10.1038/sj.leu.2400669. PubMed DOI
Van den Heuvel-Eibrink M.M., van der Holt B., Burnett A.K., Knauf W.U., Fey M.F., Verhoef G.E., Vellenga E., Ossenkoppele G.J., Lowenberg B., Sonneveld P. CD34-related coexpression of MDR1 and BCRP indicates a clinically resistant phenotype in patients with acute myeloid leukemia (AML) of older age. Ann. Hematol. 2007;86:329–337. doi: 10.1007/s00277-007-0269-7. PubMed DOI PMC
Shman T.V., Fedasenka U.U., Savitski V.P., Aleinikova O.V. CD34+ leukemic subpopulation predominantly displays lower spontaneous apoptosis and has higher expression levels of Bcl-2 and MDR1 genes than CD34- cells in childhood AML. Ann. Hematol. 2008;87:353–360. doi: 10.1007/s00277-008-0439-2. PubMed DOI
Marzac C., Teyssandier I., Calendini O., Perrot J.Y., Faussat A.M., Tang R., Casadevall N., Marie J.P., Legrand O. Flt3 internal tandem duplication and P-glycoprotein functionality in 171 patients with acute myeloid leukemia. Clin. Cancer Res. 2006;12:7018–7024. doi: 10.1158/1078-0432.CCR-06-0641. PubMed DOI
Boyer T., Gonzales F., Barthelemy A., Marceau-Renaut A., Peyrouze P., Guihard S., Lepelley P., Plesa A., Nibourel O., Delattre C., et al. Clinical significance of ABCB1 in acute myeloid leukemia: A comprehensive study. Cancers (Basel) 2019;11:1323. doi: 10.3390/cancers11091323. PubMed DOI PMC
Hirsch P., Tang R., Marzac C., Perrot J.Y., Fava F., Bernard C., Jeziorowska D., Marie J.P., Legrand O. Prognostic impact of high ABC transporter activity in 111 adult acute myeloid leukemia patients with normal cytogenetics when compared to FLT3, NPM1, CEBPA and BAALC. Haematologica. 2012;97:241–245. doi: 10.3324/haematol.2010.034447. PubMed DOI PMC
Yuan X., Koehn J., Hogge D.E. Identification of prognostic subgroups among acute myeloid leukemia patients with intermediate risk cytogenetics using a flow-cytometry-based assessment of ABC-transporter function. Leuk. Res. 2015;39:689–695. doi: 10.1016/j.leukres.2015.04.018. PubMed DOI
Hollo Z., Homolya L., Hegedus T., Sarkadi B. Transport properties of the multidrug resistance-associated protein (MRP) in human tumour cells. FEBS Lett. 1996;383:99–104. doi: 10.1016/0014-5793(96)00237-2. PubMed DOI
Ozvegy-Laczka C., Hegedus T., Varady G., Ujhelly O., Schuetz J.D., Varadi A., Keri G., Orfi L., Nemet K., Sarkadi B. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol. Pharmacol. 2004;65:1485–1495. doi: 10.1124/mol.65.6.1485. PubMed DOI
Ujhelly O., Ozvegy C., Varady G., Cervenak J., Homolya L., Grez M., Scheffer G., Roos D., Bates S.E., Varadi A., et al. Application of a human multidrug transporter (ABCG2) variant as selectable marker in gene transfer to progenitor cells. Hum. Gene Ther. 2003;14:403–412. doi: 10.1089/104303403321209005. PubMed DOI
Skarydova L., Nobilis M., Wsol V. Role of carbonyl reducing enzymes in the phase I biotransformation of the non-steroidal anti-inflammatory drug nabumetone in vitro. Xenobiotica. 2013;43:346–354. doi: 10.3109/00498254.2012.720048. PubMed DOI
Hofman J., Malcekova B., Skarka A., Novotna E., Wsol V. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3. Toxicol. Appl. Pharmacol. 2014;278:238–248. doi: 10.1016/j.taap.2014.04.027. PubMed DOI
Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Bennett J.M., Catovsky D., Daniel M.T., Flandrin G., Galton D.A., Gralnick H.R., Sultan C. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br. J. Haematol. 1976;33:451–458. doi: 10.1111/j.1365-2141.1976.tb03563.x. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC