Climate-human interactions contributed to historical forest recruitment dynamics in Mediterranean subalpine ecosystems
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2016-30121
Spanish Ministry of Economy, Industry, and Competitiveness
Pollino National Park
CIPE 71/2016
FISR-MIUR Italian Mountain Lab
17-22102S
Czech Republic Grant Agency
18-11004S
Czech Republic Grant Agency
CZ.02.1.01/0.0/0.0/16_019/0000797
SustES project
RTI2018-096884-B-C31
Spanish Ministry of Science
PubMed
32574409
DOI
10.1111/gcb.15246
Knihovny.cz E-zdroje
- Klíčová slova
- Pinus heldreichii, Pinus uncinata, dendroecology, ecological history, recruitment, rewilding, subalpine forests, tree-rings,
- MeSH
- borovice * MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- lesy MeSH
- lidé MeSH
- podnebí MeSH
- stromy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie MeSH
- Španělsko MeSH
Long-term tree recruitment dynamics of subalpine forests mainly depend on temperature changes, but little is known about the feedbacks between historical land use and climate. Here, we analyze a southern European, millennium-long dataset of tree recruitment from three high-elevation pine forests located in Mediterranean mountains (Pyrenees, northeastern Spain; Pollino, southern Italy; and Mt. Smolikas, northern Greece). We identify synchronized recruitment peaks in the late 15th and early 16th centuries, following prolonged periods of societal and climate instability. Major European population crises in the 14th and 15th centuries associated with recurrent famines, the Black Death pandemic, and political turmoil are likely to have reduced the deforestation of subalpine environments and caused widespread rewilding. We suggest that a distinct cold phase in the Little Ice Age around 1450 ce could also have accelerated the cessation of grazing pressure, particularly in the Pyrenees, where the demographic crisis was less severe. Most pronounced in the Pyrenees, the enhanced pine recruitment from around 1500-1550 ce coincides with temporarily warmer temperatures associated with a positive phase of the North Atlantic Oscillation. We diagnose that a mixture of human and climate factors has influenced past forest recruitment dynamics in Mediterranean subalpine ecosystems. Our results highlight how complex human-climate interactions shaped forest dynamics during pre-industrial times and provide historical analogies to recent rewilding.
DendrologyLab Department of Agriculture and Forest Sciences University of Tuscia Viterbo Italy
Department of Geography Faculty of Science Masaryk University Brno Czech Republic
Department of Geography Johannes Gutenberg University Mainz Germany
Department of Geography University of Cambridge Cambridge UK
EiFAB iuFOR University of Valladolid Soria Spain
Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Álvarez-Nogal, C., & Prados de la Escosura, L. (2013). The rise and fall of Spain (1270-1850). Economic History Review, 66, 1-37. https://doi.org/10.1111/j.1468-0289.2012.00656.x
Ameztegui, A., Coll, L., Brotons, L., & Ninot, J. M. (2015). Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Global Ecology and Biogeography, 25, 263-273. https://doi.org/10.1111/geb.12407
Aniol, R. W. (1983). Tree-ring analysis using CATRAS. Dendrochronologia, 1, 45-53.
Aniol, R. W. (1987). A new device for computer assisted measurement of tree-ring widths. Dendrochronologia, 5, 135-141.
Baker, A. C., Hellstrom, J., Kelly, B. F. J., Mariethoz, G., & Trouet, V. (2015). A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Scientific Reports, 5, 10307. https://doi.org/10.1038/srep10307
Bintliff, J. L. (2012). The complete archaeology of Greece, from hunter-gatherers to the twentieth century AD. Oxford, New York: Blackwell-Wiley.
Blondel, J. (2006). The "design" of Mediterranean landscapes: A millennial story of humans and ecological systems during the historic period. Human Ecology, 34, 713-729. https://doi.org/10.1007/s10745-006-9030-4
Buma, B. (2015). Disturbance interactions: Characterization, prediction, and the potential for cascading effects. Ecosphere, 6, 1-15. https://doi.org/10.1890/ES15-00058.1
Büntgen, U., Frank, D., Grudd, H., & Esper, J. (2008). Long-term summer temperature variations in the Pyrenees. Climate Dynamics, 31, 615-631. https://doi.org/10.1007/s00382-008-0390-x
Büntgen, U., Krusic, P. J., Piermattei, A., Coomes, D. A., Esper, J., Myglan, V. S., … Körner, C. (2019). Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications, 10, 2171. https://doi.org/10.1038/s41467-019-10174-4
Büntgen, U., Krusic, P. J., Verstege, A., Sangüesa-Barreda, G., Wagner, S., Camarero, J. J., … Esper, J. (2017). New tree-ring evidence from the Pyrenees reveals Western Mediterranean climate variability since Medieval Times. Journal of Climate, 30, 5295-5318. https://doi.org/10.1175/JCLI-D-16-0526.1
Camarero, J. J., & Gutiérrez, E. (2004). Pace and pattern of recent treeline dynamics: Response of ecotones to climatic variability in the Spanish Pyrenees. Climatic Change, 63, 181-200. https://doi.org/10.1023/B:CLIM.0000018507.71343.46
Camarero, J. J., & Gutiérrez, E. (2007). Response of Pinus uncinata recruitment to climate warming and changes in grazing pressure in an isolated population of the Iberian system (NE Spain). Arctic, Antarctic, and Alpine Research, 39, 210-217. https://doi.org/10.1657/1523-0430(2007)39[210:ROPURT]2.0.CO;2
Camarero, J. J., Linares, J. C., García-Cervigón, A. I., Batllori, E., Martínez, I., & Gutiérrez, E. (2017). Back to the future: The responses of alpine treelines to climate warming are constrained by the current ecotone structure. Ecosystems, 20, 683-700. https://doi.org/10.1007/s10021-016-0046-3
Carlson, B. Z., Georges, D., Rabatel, A., Randin, C. F., Renaud, J., Delestrade, A., … Thuiller, W. (2014). Accounting for tree line shift, glacier retreat and primary succession in mountain plant distribution models. Diversity and Distributions, 20, 1379-1391. https://doi.org/10.1111/ddi.12238
Chang, C., & Tourtellotte, P. A. (1993). Ethnoarchaeological survey of pastoral transhumance sites in the Grevena region, Greece. Journal of Field Archaeology, 20, 249-264. https://doi.org/10.1179/009346993791549192
Du, H., Liu, J., Li, M.-H., Büntgen, U., Yang, Y., Wang, L., … He, H. S. (2018). Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Global Change Biology, 24, 1256-1266. https://doi.org/10.1111/gcb.13963
Ejarque, A., Julià, R., Riera, S., Palet, J. M., Orengo, H. A., Miras, Y., & Gascón, C. (2009). Tracing the history of highland human management in the eastern Pre-Pyrenees: An interdisciplinary palaeoenvironmental study at the Pradell fen, Spain. Holocene, 19, 1241-1255. https://doi.org/10.1177/0959683609345084
Esper, J., Frank, D. C., Battipaglia, G., Büntgen, U., Holert, C., Treydte, K., … Saurer, M. (2010). Low-frequency noise in δ 13C and δ 18O tree ring data: A case study of Pinus uncinata in the Spanish Pyrenees. Global Biogeochemical Cycles, 24, 1-11. https://doi.org/10.1029/2010GB003772
Esper, J., George, S. S., Anchukaitis, K., D'Arrigo, R., Ljungqvist, F. C., Luterbacher, J., … Büntgen, U. (2018). Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia, 50, 81-90. https://doi.org/10.1016/j.dendro.2018.06.001
Esper, J., Klippel, L., Krusic, P. J., Konter, O., Raible, C. C., Xoplaki, E., … Büntgen, U. (2020). Eastern Mediterranean summer temperatures since 730 CE from Mt. Smolikas tree-ring densities. Climate Dynamics, 54, 1367-1382. https://doi.org/10.1007/s00382-019-05063-x
Esper, J., Konter, O., Krusic, P., Saurer, M., Holzkämper, S., & Büntgen, U. (2015). Long-term summer temperature variations in the Pyrenees from detrended stable carbon isotopes. Geochronometria, 42, 53-59. https://doi.org/10.1515/geochr-2015-0006
Esper, J., & Schweingruber, F. H. (2004). Large-scale treeline changes recorded in Siberia. Geophysical Research Letters, 31, 1-5. https://doi.org/10.1029/2003GL019178
Fillat, F., García-González, R., Gómez, D., & Reiné, R. (2008). Pastos del Pirineo. Madrid: Consejo Superior de Investigaciones Científicas, Premios Félix de Azara, Diputación de Huesca. 320 pp.
Florenzano, A. (2019). The history of pastoral activities in S Italy inferred from palynology: A long-term perspective to support biodiversity awareness. Sustainability, 11, 404. https://doi.org/10.3390/su11020404
Franke, J. G., Werner, J. P., & Donner, R. V. (2017). Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks. Climate of the Past, 13, 1593-1608. https://doi.org/10.5194/cp-13-1593-2017
Fritts, H. C. (1976). Tree rings and climate. London, UK: Academic Press.
Gaillard, M.-J., Sugita, S., Mazier, F., Trondman, A.-K., Broström, A., Hickler, T., … Seppä, H. (2010). Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Climate of the Past, 6, 483-499. https://doi.org/10.5194/cp-6-483-2010
Galop, D., Rius, D., Cugny, C., & Mazier, F. (2013). A history of long-term human-environment interactions in the French Pyrenees inferred from the pollen data. In L. Lozny (Ed.), Continuity and change in cultural adaptation to mountain environments. Studies in human ecology and adaptation (Vol. 7, pp. 19-30). Springer. https://doi.org/10.1007/978-1-4614-5702-2_3
Galván, J. D., Camarero, J. J., & Gutiérrez, E. (2014). Seeing the trees for the forest: Drivers of individual growth responses to climate in Pinus uncinata mountain forests. Journal of Ecology, 102, 1244-1257. https://doi.org/10.1111/1365-2745.12268
Garcés-Pastor, S., Cañellas-Boltà, N., Pèlachs, A., Soriano, J.-M., Pérez-Obiol, R., Pérez-Haase, A., … Vegas-Vilarrúbio, T. (2017). Environmental history and vegetation dynamics in response to climate variations and human pressure during the Holocene in Bassa Nera, Central Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology, 479, 48-60. https://doi.org/10.1016/j.palaeo.2017.04.016
Gehrig-Fasel, J., Guisan, A., & Zimmermann, N. E. (2007). Tree line shifts in the Swiss Alps: Climate change or land abandonment? Journal of Vegetation Science, 18, 571-582. https://doi.org/10.1111/j.1654-1103.2007.tb02571.x
Goldewijk, K. K., Beusen, A., Van Drecht, G., & De Vos, M. (2011). The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20, 73-86. https://doi.org/10.1111/j.1466-8238.2010.00587.x
Goldewijk, K. K., & Verburg, P. H. (2013). Uncertainties in global-scale reconstructions of historical land use: An illustration using the HYDE data set. Landscape Ecology, 28, 861-877. https://doi.org/10.1007/s10980-013-9877-x
Gottfried, R. S. (1983). The Black Death: Natural and human disaster in Medieval Europe. New York: Free Press. ISBN 9781439118467.
Harsch, M. A., Hulme, P. E., McGlone, M. S., & Duncan, R. P. (2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040-1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x
Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bulletin, 43, 69-78.
Holtmeier, F. K., & Broll, G. (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology Biogeography, 14, 395-410. https://doi.org/10.1111/j.1466-822X.2005.00168.x
Hurrell, J., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climate significance and environmental impact (Vol. 134, pp. 1-36). Geophysical Monograph. USA: American Geophysical Union. https://doi.org/10.1029/134GM01
Hurrell, J. W., & Van Loon, H. (1997). Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36, 301-326. https://doi.org/10.1023/A:1005314315270
Kaplan, J. O., & Krumhardt, K. M. (2018). The KK09 anthropogenic land cover change scenarios for Europe and neighboring countries. https://doi.org/10.1594/PANGAEA.893758
Kaplan, J. O., Krumhardt, K. M., & Zimmermann, N. (2009). The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews, 28, 3016-3034. https://doi.org/10.1016/j.quascirev.2009.09.028
Kharuk, V. I., Im, S. T., Dvinskaya, M. L., & Ranson, K. J. (2010). Climate-induced mountain tree-line evolution in southern Siberia. Scandinavian Journal of Forest Research, 25, 446-454. https://doi.org/10.1080/02827581.2010.509329
Kirdyanov, A. V., Hagedorn, F., Knorre, A. A., Fedotova, E. V., Vaganov, E. A., Naurzbaev, M. M., … Rigling, A. (2012). 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas, 41, 56-67. https://doi.org/10.1111/j.1502-3885.2011.00214.x
Klippel, L., Krusic, P. J., Brandes, R., Hartl-Meier, C., Trouet, V., Meko, M., & Esper, J. (2017). High-elevation inter-site differences in Mount Smolikas tree-ring width data. Dendrochronologia, 44, 164-173. https://doi.org/10.1016/j.dendro.2017.05.006
Konter, O., Krusic, P. J., Trouet, V., & Esper, J. (2017). Meet Adonis, Europe’s oldest dendrochronologically dated tree. Dendrochronologia, 42, 12. https://doi.org/10.1016/j.dendro.2016.12.001
Körner, C. (2012). Alpine treelines: Functional ecology of the global high elevation tree limits. Basel, Switzerland: Springer.
Körner, C. (2017). A matter of tree longevity. Science, 355, 130-131. https://doi.org/10.1126/science.aal2449
Leigh, D. S., Gragson, T. L., & Coughlan, M. R. (2016). Colluvial legacies of millennial landscape change on individual hillsides, place-based investigation in the western Pyrenees Mountains. Quaternary International, 402, 61-71. https://doi.org/10.1016/j.quaint.2015.08.031
Leunda, M., González-Sampériz, P., Gil-Romera, G., Aranbarri, J., Moreno, A., Oliva-Urcia, B., … Valero-Garcés, B. (2017). The Late-Glacial and Holocene Marboré Lake sequence (2612 m a.s.l., Central Pyrenees, Spain): Testing high altitude sites sensitivity to millennial scale vegetation and climate variability. Global and Planetary Change, 157, 214-231. https://doi.org/10.1016/j.gloplacha.2017.08.008
Liang, E., Wang, Y., Piao, S., Lu, X., Camarero, J. J., Zhu, H., … Peñuelas, J. (2016). Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 113, 4380-4385. https://doi.org/10.1073/pnas.1520582113
Malanima, P. (2005). Italian urban population 1300-1861. www.paolomalanima.it/default_file/Italian%20Economy/Urban_Population.pdf
Mensing, S., Tunno, I., Cifani, G., Florindo, F., Noble, P., Sagnotti, L., & Piovesan, G. (2013). Effects of human impacts and climate variations on forest: The Rieti basin since medieval time. Annali di Botanica, 3, 121-126. https://doi.org/10.4462/annbotrm-10243
Mensing, S., Tunno, I., Cifani, G., Passigli, S., Noble, P., Archer, C., & Piovesan, G. (2016). Human and climatically induced environmental change in the Mediterranean during the Medieval Climate Anomaly and Little Ice Age: A case from central Italy. Anthropocene, 15, 49-59. https://doi.org/10.1016/j.ancene.2016.01.003
Miras, Y., Ejarque, A., Riera Mora, S., Orengo, H. A., & Palet Martinez, J. M. (2015). Andorran high Pyrenees (Perafita Valley, Andorra): Serra Mitjana fen. Grana, 54, 313-316. https://doi.org/10.1080/00173134.2015.1087590
Morellón, M., Valero-Garcés, B., González-Sampériz, P., Vegas-Vilarrúbia, T., Rubio, E., Rieradevall, M., … Soto, J. (2011). Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. Journal of Paleolimnology, 46, 423-452. https://doi.org/10.1007/s10933-009-9346-3
Navarro, L. M., & Pereira, H. M. (2012). Rewilding abandoned landscapes in Europe. In H. M. Pereira & L. M. Navarro (Eds.), Rewilding European landscapes (pp. 3-23). Cham, Switzerland: Springer International.
Ortega, P., Lehner, F., Swingedouw, D., Masson-Delmotte, V., Raible, C. C., Casado, M., & Yiou, P. (2015). A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature, 523, 71-74. https://doi.org/10.1038/nature14518
Pascua Echegaray, E. (2012). Señores del Paisaje. Ganadería y recursos naturales en Aragón, siglos XIII-XVII. Universitat de Valencia-PUV, 327 pp.
Pérez-Obiol, R., BalBal, M. C., Pèlachs, A., Cunill, R., & Soriano, J. M. (2012). Vegetation dynamics and anthropogenically forced changes in the Estanilles peat bog (southern Pyrenees) during the last seven millennia. Vegetation History and Archaeobotany, 21, 385-396.
Piovesan, G. (2019). A light-demanding pine spreads into a closed forest. Frontiers in Ecology and the Environment, 17, 454. https://doi.org/10.1002/fee.2109
Piovesan, G., Biondi, F., Baliva, M., Dinella, A., Di Fiore, L., Marchiano, V., … Di Filippo, A. (2019). Tree growth patterns associated with extreme longevity: Implications for the ecology and conservation of primeval trees in Mediterranean mountains. Anthropocene, 26, 2213-3054. https://doi.org/10.1016/j.ancene.2019.100199
Piovesan, G., Biondi, F., Baliva, M., Presutti Saba, E., Calcagnile, L., Quarta, G., … Di Filippo, A. (2018). The oldest dated tree of Europe lives in the wild Pollino massif: Italus, a strip-bark Heldreich’s pine. Ecology, 99, 1682-1684. https://doi.org/10.1002/ecy.2231
Piovesan, G., Mercuri, A. M., & Mensing, S. A. (2018). The potential of paleoecology for functional forest restoration planning: Lessons from Late Holocene Italian pollen records. Plant Biosystems, 152, 508-514. https://doi.org/10.1080/11263504.2018.1435582
Porter, S. (2009). The great plague. Chalford, UK: Amberley Publishing. Retrieved from https://scholar.google.com/scholar_lookup?title=The%20Great%20Plague&publication_year=2009&author=S.%20Porter
Reba, M., Reitsma, F., & Seto, K. C. (2016). Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000. Scientific Data, 3, 160034. https://doi.org/10.1038/sdata.2016.34
Sangüesa-Barreda, G., Camarero, J. J., Esper, J., Galván, J. D., & Büntgen, U. (2018). A millennium-long perspective on high-elevation pine recruitment in the Spanish central Pyrenees. Canadian Journal of Forest Research, 1113, 1108-1113. https://doi.org/10.1139/cjfr-2018-0025
Schoolman, E. M., Mensing, S., & Piovesan, G. (2018). Land use and the human impact on the environment in Medieval Italy. Journal of Interdisciplinary History, 49, 419-444. https://doi.org/10.1162/jinh_a_01303
Seguin, J., Bintliff, J. L., Grootes, P. M., Bauersachs, T., Dörfler, W., Heymann, C., … Unkel, I. (2019). 2500 years of anthropogenic and climatic landscape transformation in the Stymphalia polje, Greece. Quaternary Science Reviews, 213, 133-154. https://doi.org/10.1016/j.quascirev.2019.04.028
Servera Vives, G., Miras, Y., Riera, S., Julià, R., Allée, P., Orengo, H., … Palet, J. M. (2014). Tracing the land use history and vegetation dynamics in the Mont Lozère (Massif Central, France) during the last 2000 years: The interdisciplinary study case of Countrasts peat bog. Quaternary International, 353, 123-139. https://doi.org/10.1016/j.quaint.2013.10.048
Stokes, M. A., & Smiley, T. L. (1996). An introduction to tree-ring dating. Tucson, AZ: University of Arizona, 73 pp.
Szeicz, J. M., & Macdonald, G. M. (1995). Recent white spruce dynamics at the subarctic alpine treeline of north-western Canada. Journal of Ecology, 83, 873-885. https://doi.org/10.2307/2261424
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., & Frank, D. C. (2009). Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science, 324, 78-80. https://doi.org/10.1126/science.1166349
Vitali, A., Camarero, J. J., Garbarino, M., Piermattei, A., & Urbinati, C. (2017). Deconstructing human-shaped treelines: Microsite topography and distance to seed source control Pinus nigra colonization of treeless areas in the Italian Apennines. Forest Ecology and Management, 406, 37-45. https://doi.org/10.1016/j.foreco.2017.10.004
Vitali, A., Garbarino, M., Camarero, J. J., Malandra, F., Toromani, E., Spalevic, V., … Urbinati, C. (2019). Pine recolonization dynamics in Mediterranean human-disturbed treeline ecotones. Forest Ecology and Management, 435, 28-37. https://doi.org/10.1016/j.foreco.2018.12.039
Walsh, K., Court-Picon, M., de Beaulieu, J. L., Guiter, F., Mocci, F., Richer, S., … Tzortzis, S. (2014). A historical ecology of the Ecrins (Southern French Alps): Archaeology and palaeoecology of the Mesolithic to the Medieval period. Quaternary International, 353, 52-73. https://doi.org/10.1016/j.quaint.2013.08.060
Wirth, K., Messier, C., Bergeron, Y., Frank, D., & Fankhänel, A. (2009). Old-growth forest definitions; a pragmatic view. In K. Wirth, G. Gleixner, & M. Heiman (Eds.), Old-growth forests. Ecological studies (Vol. 207, pp. 11-33). Berlin-Heidelberg: Springer-Verlag.
Zasada, J. C., Sharik, T. L., & Nygren, M. (1992). The reproductive process in boreal forest trees. In H. H. Shugart, R. Leemans, & G. B. Bonan (Eds.), A systems analysis of the global boreal forest (pp. 85-125). Cambridge, UK: Cambridge University Press.