Dual Role of Gibberellin in Perennial Shoot Branching: Inhibition and Activation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32582259
PubMed Central
PMC7289990
DOI
10.3389/fpls.2020.00736
Knihovny.cz E-zdroje
- Klíčová slova
- GA2-oxidases, GA20-oxidases, GA3-oxidases, GID1, axillary branching, gibberellin, hormones, strigolactone,
- Publikační typ
- časopisecké články MeSH
Shoot branching from axillary buds (AXBs) is regulated by a network of inhibitory and promotive forces, which includes hormones. In perennials, the dwarfed stature of the embryonic shoot inside AXBs is indicative of gibberellin (GA) deficiency, suggesting that AXB activation and outgrowth require GA. Nonetheless, the role of GA in branching has remained obscure. We here carried out comprehensive GA transcript and metabolite analyses in hybrid aspen, a perennial branching model. The results indicate that GA has an inhibitory as well as promotive role in branching. The latter is executed in two phases. While the expression level of GA2ox is high in quiescent AXBs, decapitation rapidly downregulated it, implying increased GA signaling. In the second phase, GA3ox2-mediated de novo GA-biosynthesis is initiated between 12 and 24 h, prior to AXB elongation. Metabolite analyzes showed that GA1/4 levels were typically high in proliferating apices and low in the developmentally inactive, quiescent AXBs, whereas the reverse was true for GA3/6. To investigate if AXBs are differently affected by GA3, GA4, and GR24, an analog of the branch-inhibitor hormone strigolactone, they were fed into AXBs of single-node cuttings. GA3 and GA4 had similar effects on GA and SL pathway genes, but crucially GA3 induced AXB abscission whereas GA4 promoted outgrowth. Both GA3 and GA4 strongly upregulated GA2ox genes, which deactivate GA1/4 but not GA3/6. Thus, the observed production of GA3/6 in quiescent AXBs targets GA1/4 for GA2ox-mediated deactivation. AXB quiescence can therefore be maintained by GA3/6, in combination with strigolactone. Our discovery of the distinct tasks of GA3 and GA4 in AXB activation might explain why the role of GA in branching has been difficult to decipher. Together, the results support a novel paradigm in which GA3/6 maintains high levels of GA2ox expression and low levels of GA4 in quiescent AXBs, whereas activation and outgrowth require increased GA1/4 signaling through the rapid reduction of GA deactivation and subsequent GA biosynthesis.
Zobrazit více v PubMed
Abe S., Sado A., Tanaka K., Kisugi T., Asami K., Ota S., et al. (2014). Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. U.S.A. 111 18084–18089. 10.1073/pnas.1410801111 PubMed DOI PMC
Agharkar M., Lomba P., Altpeter F., Zhang H., Kenworthy K., Lange T. (2007). Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol. 5 791–801. 10.1111/j.1467-7652.2007.00284.x PubMed DOI
Aguilar-Martínez J. A., Poza-Carrión C., Cubas P. (2007). Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19 458–472. 10.1105/tpc.106.048934 PubMed DOI PMC
Barthélémy D., Caraglio Y. (2007). Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99 375–407. 10.1093/aob/mcl260 PubMed DOI PMC
Bennett T., Sieberer T., Willett B., Booker J., Luschnig C., Leyser O. (2006). The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16 553–563. 10.1016/j.cub.2006.01.058 PubMed DOI
Binenbaum J., Weinstain R., Shani E. (2018). Gibberellin localization and transport in plants. Trends Plant Sci. 23 410–421. 10.1016/j.tplants.2018.02.005 PubMed DOI
Bolduc N., Hake S. (2009). The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21 1647–1658. 10.1105/tpc.109.068221 PubMed DOI PMC
Bolle C. (2004). The role of GRAS proteins in plant signal transduction and development. Planta 218 683–692. 10.1007/s00425-004-1203-z PubMed DOI
Brewer P. B., Dun E. A., Ferguson B. J., Rameau C., Beveridge C. A. (2009). Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol. 150 482–493. 10.1104/pp.108.134783 PubMed DOI PMC
Busov V. B., Meilan R., Pearce D. W., Ma C., Rood S. B., Strauss S. H. (2003). Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol. 132 1283–1291. 10.1104/pp.103.020354 PubMed DOI PMC
Choubane D., Rabot A., Mortreau E., Legourrierec J., Péron T., Foucher F., et al. (2012). Photocontrol of bud burst involves gibberellin biosynthesis in Rosa sp. Plant Physiol. 169 1271–1280. 10.1016/j.jplph.2012.04.014 PubMed DOI
Claeys H., De Bodt S., Inzé D. (2014). Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci. 19 231–239. 10.1016/j.tplants.2013.10.001 PubMed DOI
Cline M. G. (1991). Apical dominance. Bot. Rev. 57 318–358. 10.1007/bf02858771 DOI
Cline M. G. (1997). Concepts and terminology of apical dominance. Am. J. Bot. 84 1064–1069. 10.2307/2446149 PubMed DOI
Davière J.-M., Achard P. (2013). Gibberellin signaling in plants. Development 140 1147–1151. 10.1242/dev.087650 PubMed DOI
Dayan J., Voronin N., Gong F., Sun T.-P., Hedden P., Fromm H., et al. (2012). Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24 66–79. 10.1105/tpc.111.093096 PubMed DOI PMC
de Saint Germain A., Ligerot Y., Dun E. A., Pillot J.-P., Ross J. J., Beveridge C. A., et al. (2013). Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol. 163 1012–1025. 10.1104/pp.113.220541 PubMed DOI PMC
Domagalska M. A., Leyser O. (2011). Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 12 211–221. 10.1038/nrm3088 PubMed DOI
Duan J., Yu H., Yuan K., Liao Z., Meng X., Jing Y., et al. (2019). Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proc. Natl. Acad. Sci. U.S.A. 116 14319–14324. 10.1073/pnas.1810980116 PubMed DOI PMC
Dun E. A., Brewer P. B., Beveridge C. A. (2009). Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci. 14 364–372. 10.1016/j.tplants.2009.04.003 PubMed DOI
Dun E. A., Ferguson B. J., Beveridge C. A. (2006). Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiol. 142 812–819. 10.1104/pp.106.086868 PubMed DOI PMC
Elfving N., Davoine C., Benlloch R., Blomberg J., Brännström K., Müller D., et al. (2011). The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc. Natl. Acad. Sci. U.S.A. 108 8245–8250. 10.1073/pnas.1002981108 PubMed DOI PMC
Eriksson S., Böhlenius H., Moritz T., Nilsson O. (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18 2172–2181. 10.1105/tpc.106.042317 PubMed DOI PMC
Ferguson B. J., Beveridge C. A. (2009). Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol. 149 1929–1944. 10.1104/pp.109.135475 PubMed DOI PMC
Gallego-Giraldo L., Ubeda-Tomas S., Gisbert C., García-Martínez J. L., Moritz T., López-Díaz I. (2008). Gibberellin homeostasis in tobacco is regulated by gibberellin metabolism genes with different gibberellin sensitivity. Plant Cell Physiol. 49 679–690. 10.1093/pcp/pcn042 PubMed DOI
González-Grandío E., Pajoro A., Franco-Zorrilla J. M., Tarancón C., Immink R. G. H., Cubas P. (2017). Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc. Natl. Acad. Sci. U.S.A. 114 E245–E254. 10.1073/pnas.1613199114 PubMed DOI PMC
Gou J., Ma C., Kadmiel M., Gai Y., Strauss S., Jiang X., et al. (2011). Tissue-specific expression of Populus C19 GA 2-oxidases differentially regulate above-and below-ground biomass growth through control of bioactive GA concentrations. New Phytol. 192 626–639. 10.1111/j.1469-8137.2011.03837.x PubMed DOI
Hallé F., Oldeman R. A., Tomlinson P. B. (1978). Tropical Trees and Forests. An Architectural Analysis. New York, NY: Springer, 444.
Hayward A., Stirnberg P., Beveridge C., Leyser O. (2009). Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 151 400–412. 10.1104/pp.109.137646 PubMed DOI PMC
Hazebroek J. P., Metzger J. D., Mansager E. R. (1993). Thermoinductive regulation of gibberellin metabolism in Thlaspi arvense L. II. Cold Induction of enzymes in gibberellin biosynthesis. Plant Physiol. 102 547–552. 10.1104/pp.102.2.547 PubMed DOI PMC
Hedden P., Phillips A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci. 5 523–530. 10.1016/s1360-1385(00)01790-8 PubMed DOI
Hedden P., Sponsel V. (2015). A century of gibberellin research. J. Plant Growth Regul. 34 740–760. 10.1007/s00344-015-9546-1 PubMed DOI PMC
Hedden P., Thomas S. G. (2012). Gibberellin biosynthesis and its regulation. Biochem. J. 444 11–25. 10.1042/BJ20120245 PubMed DOI
Helliwell C. A., Chandler P. M., Poole A., Dennis E. S., Peacock W. J. (2001). The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc. Natl. Acad. Sci. U.S.A. 98 2065–2070. 10.1073/pnas.041588998 PubMed DOI PMC
Hirano K., Ueguchi-Tanaka M., Matsuoka M. (2008). GID1-mediated gibberellin signaling in plants. Trends Plant Sci. 13 192–199. 10.1016/j.tplants.2008.02.005 PubMed DOI
Hu Y.-X., Tao Y.-B., Xu Z.-F. (2017). Overexpression of Jatropha gibberellin 2-oxidase 6 (JcGA2ox6) induces dwarfism and smaller leaves, flowers and fruits in Arabidopsis and Jatropha. Front. Plant Sci. 8:2103. 10.3389/fpls.2017.02103 PubMed DOI PMC
Israelsson M., Mellerowicz E., Chono M., Gullberg J., Moritz T. (2004). Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development. Plant Physiol. 135 221–230. 10.1104/pp.104.038935 PubMed DOI PMC
Ito S., Yamagami D., Umehara M., Hanada A., Yoshida S., Sasaki Y., et al. (2017). Regulation of strigolactone biosynthesis by gibberellin signaling. Plant Physiol. 174 1250–1259. 10.1104/pp.17.00301 PubMed DOI PMC
Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., et al. (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 15 1560–1565. 10.1016/j.cub.2005.07.023 PubMed DOI
Katyayini N. U., Rinne P. L. H., van der Schoot C. (2019). Strigolactone-based node-to-bud signaling may restrain shoot branching in hybrid aspen. Plant Cell Physiol. 60 2797–2811. 10.1093/pcp/pcz170 PubMed DOI PMC
Kebrom T. H. (2017). A growing stem inhibits bud outgrowth–the overlooked theory of apical dominance. Front. Plant Sci. 8:1874. 10.3389/fpls.2017.01874 PubMed DOI PMC
King R. W., Evans L. T., Mander L. N., Moritz T., Pharis R. P., Twitchin B. (2003). Synthesis of gibberellin GA6 and its role in flowering of Lolium temulentum. Phytochemistry 62 77–82. 10.1016/s0031-9422(02)00447-8 PubMed DOI
King R. W., Mander L. N., Asp T., MacMillan C. P., Blundell C. A., Evans L. T. (2008). Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium. Mol. Plant 1 295–307. 10.1093/mp/ssm030 PubMed DOI
King R. W., Moritz T., Evans L. T., Junttila O., Herlt A. (2001). Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol. 127 624–632. 10.1104/pp.010378 PubMed DOI PMC
Kobayashi M., Sakurai A., Saka H., Takahashi N. (1989). Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiol. 30 963–969. 10.1093/oxfordjournals.pcp.a077841 DOI
Lange M. J. P., Lange T. (2016). Ovary-derived precursor gibberellin A9 is essential for female flower development in cucumber. Development 143 4425–4429. 10.1242/dev.135947 PubMed DOI
Lantzouni O., Klermund C., Schwechheimer C. (2017). Largely additive effects of gibberellin and strigolactone on gene expression in Arabidopsis thaliana seedlings. Plant J. 92 924–938. 10.1111/tpj.13729 PubMed DOI
Leyser O. (2009). The control of shoot branching: an example of plant information processing. Plant Cell Environ. 32 694–703. 10.1111/j.1365-3040.2009.01930.x PubMed DOI
Li C.-J., Bangerth F. (1999). Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol. Plant. 106 415–420. 10.1034/j.1399-3054.1999.106409.x PubMed DOI
Li H., Torres-Garcia J., Latrasse D., Benhamed M., Schilderink S., Zhou W., et al. (2017). Plant-specific histone deacetylases HDT1/2 regulate GIBBERELLIN 2-OXIDASE2 expression to control Arabidopsis root meristem cell number. Plant Cell 29 2183–2196. 10.1105/tpc.17.00366 PubMed DOI PMC
Lo S.-F., Yang S.-Y., Chen K.-T., Hsing Y.-I., Zeevaart J. A., Chen L.-J., et al. (2008). A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20 2603–2618. 10.1105/tpc.108.060913 PubMed DOI PMC
Marzec M. (2017). Strigolactones and gibberellins: a new couple in the phytohormone world? Trends Plant Sci. 22 813–815. 10.1016/j.tplants.2017.08.001 PubMed DOI
Mason M. G., Ross J. J., Babst B. A., Wienclaw B. N., Beveridge C. A. (2014). Sugar demand, not auxin, is the initial regulator of apical dominance. Proc. Natl. Acad. Sci. U.S.A. 111 6092–6097. 10.1073/pnas.1322045111 PubMed DOI PMC
Mauriat M., Sandberg L. G., Moritz T. (2011). Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen. Plant J. 67 805–816. 10.1111/j.1365-313X.2011.04635.x PubMed DOI
Middleton A. M., Úbeda-Tomás S., Griffiths J., Holman T., Hedden P., Thomas S. G., et al. (2012). Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proc. Natl. Acad. Sci. U.S.A. 109 7571–7576. 10.1073/pnas.1113666109 PubMed DOI PMC
Morris S. E., Cox M. C., Ross J. J., Krisantini S., Beveridge C. A. (2005). Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiol. 138 1665–1672. 10.1104/pp.104.058743 PubMed DOI PMC
Müller D., Leyser O. (2011). Auxin, cytokinin and the control of shoot branching. Ann. Bot. 107 1203–1212. 10.1093/aob/mcr069 PubMed DOI PMC
Murfet I., Reid J. (1993). Peas: genetics, molecular biology and biotechnology. Seed Sci. Res. 4 165–216.
Nakajima M., Shimada A., Takashi Y., Kim Y. C., Park S. H., Ueguchi-Tanaka M., et al. (2006). Identification and characterization of Arabidopsis gibberellin receptors. Plant J. 46 880–889. 10.1111/j.1365-313X.2006.02748.x PubMed DOI
Nakayama I., Miyazawa T., Kobayashi M., Kamiya Y., Abe H., Sakurai A. (1990). Effects of a new plant growth regulator prohexadione calcium (BX-112) on shoot elongation caused by exogenously applied gibberellins in rice (Oryza sativa L.) seedlings. Plant Cell Physiol. 31 195–200. 10.1093/oxfordjournals.pcp.a077892 DOI
Ni J., Gao C., Chen M.-S., Pan B.-Z., Ye K., Xu Z.-F. (2015). Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas. Plant Cell Physiol. 56 1655–1666. 10.1093/pcp/pcv089 PubMed DOI PMC
Ni J., Zhao M.-L., Chen M.-S., Pan B.-Z., Tao Y.-B., Xu Z.-F. (2017). Comparative transcriptome analysis of axillary buds in response to the shoot branching regulators gibberellin A3 and 6-benzyladenine in Jatropha curcas. Sci. Rep. 7:11417. 10.1038/s41598-017-11588-0 PubMed DOI PMC
Nordström A., Tarkowski P., Tarkowska D., Norbaek R., Åstot C., Dolezal K., et al. (2004). Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proc. Natl. Acad. Sci. U.S.A. 101 8039–8044. 10.1073/pnas.0402504101 PubMed DOI PMC
Olszewski N., Sun T.-P., Gubler F. (2002). Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14 S61–S80. 10.1105/tpc.010476 PubMed DOI PMC
Ongaro V., Bainbridge K., Williamson L., Leyser O. (2008). Interactions between axillary branches of Arabidopsis. Mol. Plant. 1 388–400. 10.1093/mp/ssn007 PubMed DOI
Paul L. K., Rinne P. L., van der Schoot C. (2014). Shoot meristems of deciduous woody perennials: self-organization and morphogenetic transitions. Curr. Opin. Plant Biol. 17 86–95. 10.1016/j.pbi.2013.11.009 PubMed DOI
Peng J., Carol P., Richards D. E., King K. E., Cowling R. J., Murphy G. P., et al. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 11 3194–3205. 10.1101/gad.11.23.3194 PubMed DOI PMC
Phillips A. L., Ward D. A., Uknes S., Appleford N. E., Lange T., Huttly A. K., et al. (1995). Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 108 1049–1057. 10.1104/pp.108.3.1049 PubMed DOI PMC
Phillips I. D. J. (1975). Apical dominance. Annu. Rev. Plant Physiol. 26 341–367. 10.1146/annurev.pp.26.060175.002013 DOI
Proebsting W. M., Hedden P., Lewis M. J., Croker S. J., Proebsting L. N. (1992). Gibberellin concentration and transport in genetic lines of pea: effects of grafting. Plant Physiol. 100 1354–1360. 10.1104/pp.100.3.1354 PubMed DOI PMC
Puig J., Pauluzzi G., Guiderdoni E., Gantet P. (2012). Regulation of shoot and root development through mutual signaling. Mol. Plant 5 974–983. 10.1093/mp/sss047 PubMed DOI
Ragni L., Nieminen K., Pacheco-Villalobos D., Sibout R., Schwechheimer C., Hardtke C. S. (2011). Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23 1322–1336. 10.1105/tpc.111.084020 PubMed DOI PMC
Rameau C., Bertheloot J., Leduc N., Andrieu B., Foucher F., Sakr S. (2015). Multiple pathways regulate shoot branching. Front. Plant Sci. 5:741. 10.3389/fpls.2014.00741 PubMed DOI PMC
Regnault T., Davière J.-M., Achard P. (2016). Long-distance transport of endogenous gibberellins in Arabidopsis. Plant Signal. Behav. 11:e1110661. 10.1080/15592324.2015.1110661 PubMed DOI PMC
Richards D. E., King K. E., Ait-Ali T., Harberd N. P. (2001). How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 67–88. 10.1146/annurev.arplant.52.1.67 PubMed DOI
Rieu I., Eriksson S., Powers S. J., Gong F., Griffiths J., Woolley L., et al. (2008a). Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20 2420–2436. 10.1105/tpc.108.058818 PubMed DOI PMC
Rieu I., Ruiz-Rivero O., Fernandez-Garcia N., Griffiths J., Powers S. J., Gong F., et al. (2008b). The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 53 488–504. 10.1111/j.1365-313X.2007.03356.x PubMed DOI
Rinne P. L., Paul L. K., Vahala J., Kangasjärvi J., van der Schoot C. (2016). Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-β-glucanase genes during branching in hybrid aspen. J. Exp. Bot. 67 5975–5991. 10.1093/jxb/erw352 PubMed DOI PMC
Rinne P. L., Paul L. K., Vahala J., Ruonala R., Kangasjärvi J., van der Schoot C. (2015). Long and short photoperiod buds in hybrid aspen share structural development and expression patterns of marker genes. J. Exp. Bot. 66 6745–6760. 10.1093/jxb/erv380 PubMed DOI PMC
Rinne P. L., Welling A., Vahala J., Ripel L., Ruonala R., Kangasjärvi J., et al. (2011). Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-β-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23 130–146. 10.1105/tpc.110.081307 PubMed DOI PMC
Sakamoto T., Kamiya N., Ueguchi-Tanaka M., Iwahori S., Matsuoka M. (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 15 581–590. 10.1101/gad.867901 PubMed DOI PMC
Schommer C., Debernardi J. M., Bresso E. G., Rodriguez R. E., Palatnik J. F. (2014). Repression of cell proliferation by miR319-regulated TCP4. Mol. Plant 7 1533–1544. 10.1093/mp/ssu084 PubMed DOI
Scott T. K., Case D. B., Jacobs W. P. (1967). Auxin-gibberellin interaction in apical dominance. Plant Physiol. 42 1329–1333. 10.1104/pp.42.10.1329 PubMed DOI PMC
Seale M., Bennett T., Leyser O. (2017). BRC1 expression regulates bud activation potential, but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development 144 1661–1673. 10.1242/dev.145649 PubMed DOI PMC
Silverstone A. L., Ciampaglio C. N., Sun T. (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10 155–169. 10.1105/tpc.10.2.155 PubMed DOI PMC
Silverstone A. L., Mak P. Y. A., Martinez E. C., Sun T. (1997). The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146 1087–1099. PubMed PMC
Sponsel V. M., Schmidt F. W., Porter S. G., Nakayama M., Kohlstruk S., Estelle M. (1997). Characterization of new gibberellin-responsive semidwarf mutants of Arabidopsis. Plant Physiol. 115 1009–1020. 10.1104/pp.115.3.1009 PubMed DOI PMC
Sun T. (2010). Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol. 154 567–570. 10.1104/pp.110.161554 PubMed DOI PMC
Sun T. (2011). The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in plants. Curr. Biol. 21 R338–R345. 10.1016/j.cub.2011.02.036 PubMed DOI
Talon M., Koornneef M., Zeevaart J. A. (1990). Accumulation of C19-gibberellins in the gibberellin-insensitive dwarf mutant gai of Arabidopsis thaliana (L.) Heynh. Planta 182 501–505. 10.1007/BF02341024 PubMed DOI
Tanaka M., Takei K., Kojima M., Sakakibara H., Mori H. (2006). Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 45 1028–1036. 10.1111/j.1365-313X.2006.02656.x PubMed DOI
Tenreira T., Lange M. J. P., Lange T., Bres C., Labadie M., Monfort A., et al. (2017). A specific gibberellin 20-oxidase dictates the flowering-runnering decision in diploid strawberry. Plant Cell 29 2168–2182. 10.1105/tpc.16.00949 PubMed DOI PMC
Thimann K. V., Skoog F. (1934). On the inhibition of bud development and other functions of growth substance in Vicia faba. Proc. R. Soc. Lond. B Biol. Sci. 114 317–339. 10.1098/rspb.1934.0010 DOI
Thomas S. G., Phillips A. L., Hedden P. (1999). Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc. Natl. Acad. Sci. U.S.A. 96 4698–4703. 10.1073/pnas.96.8.4698 PubMed DOI PMC
Tuskan G. A., Difazio S., Jansson S., Bohlmann J., Grigoriev I., Hellsten U., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313 1596–1604. 10.1126/science.1128691 PubMed DOI
Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., et al. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437 693–698. 10.1038/nature04028 PubMed DOI
Ueguchi-Tanaka M., Nakajima M., Motoyuki A., Matsuoka M. (2007). Gibberellin receptor and its role in gibberellin signaling in plants. Annu. Rev. Plant Biol. 58 183–198. 10.1146/annurev.arplant.58.032806.103830 PubMed DOI
Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. (2013). Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta 112 85–94. 10.1016/j.talanta.2013.03.068 PubMed DOI
Wang M., Le Moigne M. A., Bertheloot J., Crespel L., Perez-Garcia M. D., Ogé L., et al. (2019). BRANCHED1: a key hub of shoot branching. Front. Plant Sci. 10:76. 10.3389/fpls.2019.00076 PubMed DOI PMC
Willige B. C., Ghosh S., Nill C., Zourelidou M., Dohmann E. M., Maier A., et al. (2007). The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19 1209–1220. 10.1105/tpc.107.051441 PubMed DOI PMC
Wu R., Hinckley T. M. (2001). Phenotypic plasticity of sylleptic branching: genetic design of tree architecture. Crit. Rev. Plant Sci. 20 467–485. 10.1080/07352689.2001.10131827 DOI
Wu R., Stettler R. (1998). Quantitative genetics of growth and development in Populus. III. Phenotypic plasticity of crown structure and function. Heredity 81 299–310. 10.1046/j.1365-2540.1998.00397.x DOI
Xu Y. L., Li L., Gage D. A., Zeevaart J. A. (1999). Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell 11 927–935. 10.1105/tpc.11.5.927 PubMed DOI PMC
Yamaguchi S. (2008). Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59 225–251. 10.1146/annurev.arplant.59.032607.092804 PubMed DOI
Yamaguchi S., Kamiya Y. (2000). Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol. 41 251–257. 10.1093/pcp/41.3.251 PubMed DOI
Zawaski C., Busov V. B. (2014). Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS One 9:e86217. 10.1371/journal.pone.0086217 PubMed DOI PMC
Zhuang W., Gao Z., Wen L., Huo X., Cai B., Zhang Z. (2015). Metabolic changes upon flower bud break in Japanese apricot are enhanced by exogenous GA4. Hortic. Res. 2:15046. 10.1038/hortres.2015.46 PubMed DOI PMC