Sensor Systems for Detecting Dough Properties Fortified with Grape Pomace and Mealworm Powders

. 2020 Jun 24 ; 20 (12) : . [epub] 20200624

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32599780

Grantová podpora
No. IGA/FT/2020/010 Tomas Bata University in Zlin
No. FEKT-S-20-6215 Brno University of Technology

The present article dealt with the fortification of plain wheat flour by the addition of grape pomace flour and mealworm larvae powder, focusing on the mineral content and selected properties of the dough. The work also analyzed the properties of one mixture in a weight combination of 80% wheat flour, 10% grape pomace, and 10% mealworm. X-ray analysis was used to measure the mineral content of calcium, iron, copper, and zinc. The properties of the individual mixture were monitored using an experimental electronic nose and a thermodynamic sensor system during the leavening. The results showed that a combination of 50% grape pomace and 50% mealworm larvae was advantageous from the viewpoint of the favorable representation of minerals. The analyzed mixture contained a high proportion of calcium (3976.7 ± 362.9 mg·kg-1), iron (209.3 ± 25.7 mg·kg-1), and copper (65.0 ± 100.1 mg·kg-1) for grape pomace as well as a high proportion of zinc (277.0 ± 21.9 mg·kg-1) for the mealworm larvae. However, this mixture showed a small change in the heat flux response when analyzed with thermodynamic sensors (lower yeast activity and worse gas formation properties resulted from the sensor characteristic with a lower response). The 100% wheat flour had the highest response, and the second highest response was recorded for a mixture of wheat flour with 10% grape pomace and 10% mealworm larvae. This combination also often had one of the highest responses when measured with an experimental electronic nose, so this combination was considered as one of the most advantageous options for processing from the mixtures mentioned in the article.

Zobrazit více v PubMed

Eber O., Wawschinek O., Langsteger W., Lind P., Klima G., Petek W., Schubert B. Iodine supplementation in the province of Styria, Austria. (zur jodversorgung in der steiermark) Wien. Med. Wochenschr. 1990;140:241–243. PubMed

Thoma C., Seal J., Mackerras D., Hunt A. Flour and Breads and their Fortification in Health and Disease Prevention. Elsevier; Amsterdam, The Netherlands: 2011. [(accessed on 19 January 2020)]. Iodine Fortification of Bread; pp. 281–291. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780123808868100261.

Özvural E.B., Vural H. Which is the best grape seed additive for frankfurters: Extract, oil or flour? J. Sci. Food Agric. 2014;94:792–797. doi: 10.1002/jsfa.6442. PubMed DOI

Ziauddeen N., Rosi A., Del Rio D. Dietary intake of (poly)phenols in children and adults: Cross-sectional analysis of UK National Diet and Nutrition Survey Rolling Programme (2008–2014) Eur. J. Nutr. 2019;58:3183–3198. doi: 10.1007/s00394-018-1862-3. PubMed DOI

Pinto P., Santos C.N. Worldwide (poly)phenol intake: Assessment methods and identified gaps. Eur. J. Nutr. 2017;56:1393–1408. doi: 10.1007/s00394-016-1354-2. PubMed DOI

Zehiroglu C., Sarikaya S.B.O. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol. 2019;56:4757–4774. doi: 10.1007/s13197-019-03952-x. PubMed DOI PMC

Krishnaswamy K., Orsat V., Gariépy Y., Thangavel K. Optimization of Microwave-Assisted Extraction of Phenolic Antioxidants from Grape Seeds (Vitis vinifera) Food Bioprocess Technol. 2013;6:441–455. doi: 10.1007/s11947-012-0800-2. DOI

Roncolini A., Milanović V., Cardinali F., Osimani A., Garofalo C., Sabbatini R., Clementi F., Pasquini M., Mozzon M., Foligni R., et al. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLoS ONE. 2019;14:e0211747. doi: 10.1371/journal.pone.0211747. PubMed DOI PMC

Kouřimská L., Kotrbová V., Kulma M., Adámková A., Mlček J., Sabolová M., Homolková D. Attitude of assessors in the Czech Republic to the consumption of house cricket Acheta domestica L. A preliminary study. Czech J. Food Sci. 2020;38:72–76. doi: 10.17221/49/2019-CJFS. DOI

Manca G., Porcu A., Ru A., Salaris M., Franco M.A., De Santis E.P.L. Comparison of γ-aminobutyric acid and biogenic amine content of different types of ewe’s milk cheese produced in Sardinia, Italy. Ital. J. Food Saf. 2015;4:123–128. doi: 10.4081/ijfs.2015.4700. PubMed DOI PMC

van Broekhoven S., Oonincx D.G.A.B., van Huis A., van Loon J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015;73:1–10. doi: 10.1016/j.jinsphys.2014.12.005. PubMed DOI

Bednářová M., Borkovcová M., Mlček J., Rop O., Zeman L. Edible insects species suitable for entomophagy under condition of Czech Republic. Acta Univ. Agric. Silv. Mendel. Brun. 2013;LXI:587–593. doi: 10.11118/actaun201361030587. DOI

Adámková A., Kouřimská L., Borkovcová M., Kulma M., Mlček J. Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravin. Slovak J. Food Sci. 2016;10:663–671. doi: 10.5219/609. DOI

Finke M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002;21:269–285. doi: 10.1002/zoo.10031. DOI

Rumpold B.A., Schlüter O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013;57:802–823. doi: 10.1002/mnfr.201200735. PubMed DOI

Zalikarenab L., Pirmohammadi R., Teimuriyansari A. Chemical Composition and Digestibility of Dried White and Red Grape Pomace for Ruminants. J. Anim. Vet. Adv. 2007;6:1107–1111.

Mohamed Ahmed I.A., Özcan M.M., Al Juhaimi F.Y., Babiker E.F.E., Ghafoor K., Banjanin T., Osman M., Gassem M.A., Alqah H.A.S. Chemical composition, bioactive compounds, mineral contents, and fatty acid composition of pomace powder of different grape varieties. J. Food. Process. Preserv. 2020;44:e14539. doi: 10.1111/jfpp.14539. DOI

Ramos-Elorduy J. Creepy Crawly Cuisine: The Gourmet Guide to Edible Insects. Park Street Press, Inner Traditions/Bear & Co.; Rochester, VT, USA: 1998. p. 150.

Mitsuhashi J. The Future Use of Insects as Human Food; Proceedings of the a Workshop on Asia-Pacific Resources and Their Potential for Development; Chiang Mai, Thailand. 19–21 February 2008.

Yen A.L. Edible Insects and Other Invertebrates in Australia: Future Prospects; Proceedings of the a Workshop on Asia-Pacific Resources and Their Potential for Development; Chiang Mai, Thailand. 19–21 February 2008.

Aguilar-Miranda E.D., López M.G., Escamilla-Santana C., Barba de la Rosa A.P. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. J. Agric. Food Chem. 2002;50:192–195. doi: 10.1021/jf010691y. PubMed DOI

González C.M., Garzón R., Rosell C.M. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Innov. Food. Sci. Emerg. Technol. 2019;51:205–210.

Mlček J., Adámek M., Adámková A., Borkovcová M., Bednářová M., Skácel J. Detection of selected heavy metals and micronutrients in edible insect and their dependency on the feed using XRF spectrometry. Potravin. Slovak J. Food Sci. 2017;11:725–730.

Wu R.A., Ding Q., Yin L., Chi X., Sun N., He R., Li Z. Comparison of the nutritional value of Mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio Molitor): Amino acid, fatty acid and element profiles. Food Chem. 2020;323:126818. doi: 10.1016/j.foodchem.2020.126818. PubMed DOI

Sousa E.C., Uchôa-Thomaz A.M.A., Carioca J.O.B., de Morais S.M., de Lima A., Martins C.G., Alexandrino C.D., Ferreira P.A.T., Rodrigues A.L.M., Rodrigues S.P., et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. (Camp.) 2014;34:135–142. doi: 10.1590/S0101-20612014000100020. DOI

Mendez M.L., Preedy V. Electronic Noses and Tongues in Food Science. 3rd ed. Academic Press, Elsevier Inc.; London, UK: 2016.

Adámek M., Adámková A., Řezníček M., Kouřimská L. The estimated possibilities of process monitoring in milk production by the simple thermodynamic sensors. Potravin. Slovak J. Food Sci. 2016;10:643–648. doi: 10.5219/462. DOI

Adámek M., Adámková A., Mlček J., Borkovcová M., Bednářová M. Acceptability and sensory evaluation of energy bars and protein bars enriched with edible insect. Potravin. Slovak J. Food Sci. 2018;12:431–437. doi: 10.5219/925. DOI

NUTRIDATABAZE.CZ. [(accessed on 21 January 2020)]; Available online: https://www.nutridatabaze.cz/

Ertl K., Goessler W. Grains, whole flour, white flour, and some final goods: An elemental comparison. Eur. Food Res. Technol. 2018;244:2065–2075. doi: 10.1007/s00217-018-3117-1. DOI

Xing W., Zhang H., Scheckel K.G., Li L. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China. Environ. Monit. Assess. 2016;188:1–10. doi: 10.1007/s10661-015-5023-3. PubMed DOI

Pande S., Sakhare S.D., Bhosale M.G., Haware D.J., Inamdar A.A. Atta (whole wheat flour) with multi-wholegrains: Flour characterization, nutritional profiling and evaluation of chapati making quality. J. Food Sci. Technol. 2017;54:3451–3458. doi: 10.1007/s13197-017-2801-7. PubMed DOI PMC

Bennemann G.D., de Assis C.F., Moreira G.C.R.C., de Lima L.H., Carvalho K.K., Torres Y.R., Botelho R.V. Mineral analysis, anthocyanins and phenolic compounds in wine residues flour. Biol. Web. Conf. 2016;7:04007. doi: 10.1051/bioconf/20160704007. DOI

Hirasawa R., Yokoigawa K. Leavening ability of baker’s yeast exposed to hyperosmotic media. Fems. Microbiol. Lett. 2001;194:159–162. doi: 10.1111/j.1574-6968.2001.tb09462.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...