Environmental and Sex Effects on Bacterial Carriage by Adult House Flies (Musca domestica L.)

. 2020 Jun 28 ; 11 (7) : . [epub] 20200628

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32605295

Grantová podpora
3020-32000-007-00D Agricultural Research Service

Adult house flies frequent microbe-rich sites such as urban dumpsters and animal facilities, and encounter and ingest bacteria during feeding and reproductive activities. Due to unique nutritional and reproductive needs, male and female flies demonstrate different interactions with microbe-rich substrates and therefore dissemination potential. We investigated culturable aerobic bacteria and coliform abundance in male and female flies (n = 107) collected from urban (restaurant dumpsters) and agricultural (dairy farm) sites. Whole-fly homogenate was aerobically cultured and enumerated on nonselective (tryptic soy agar; culturable bacteria) and selective (violet-red bile agar, VRBA; coliforms) media. Unique morphotypes from VRBA cultures of agricultural flies were identified and tested for susceptibility to 14 antimicrobials. Female flies harbored more bacteria than males and there was a sex by site interaction with sex effects on bacterial abundance at the urban site. Coliform abundance did not differ by sex, site or sex within site. Both male and female flies carried antimicrobial-resistant (AMR) bacteria: 36/38 isolates (95%) were resistant to ≥1 antimicrobial, 33/38 were multidrug-resistant (≥2), and 24/38 isolates were resistant to ≥4 antimicrobials. Our results emphasize the role of house flies in harboring bacteria including AMR strains that pose a risk to human and animal health.

Zobrazit více v PubMed

Schmidtmann E.T., Martin P.A.W. Relationship between selected bacteria and the growth of immature house flies, Musca domestica, in an axenic test system. J. Med. Entomol. 1992;29:232–235. doi: 10.1093/jmedent/29.2.232. PubMed DOI

Zurek L., Schal C., Watson D.W. Diversity and contribution of the intestinal bacterial community to the development of Musca domestica (Diptera: Muscidae) larvae. J. Med. Entomol. 2000;37:924–928. doi: 10.1603/0022-2585-37.6.924. PubMed DOI

West L.S. The Housefly: Its Natural History, Medical Importance, and Control. Comstock Publishing Co. Inc.; Ithaca, NY, USA: 1951.

Mullen G.R., Durden L.A. Medical and Veterinary Entomology. Academic Press; San Diego, CA, USA: 2009.

Moon R.D., Hinton J.L., O’Rourke S.D., Schmidt D.R. Nutritional value of fresh and composted poultry manure for house fly (Diptera: Muscidae) larvae. J. Econ. Entomol. 2001;94:1308–1317. doi: 10.1603/0022-0493-94.5.1308. PubMed DOI

Nayduch D., Burrus R.G. Flourishing in filth: House fly–microbe interactions across life history. Ann. Entomol. Soc. Am. 2017;110:6–18. doi: 10.1093/aesa/saw083. DOI

Greenberg B. Flies and Disease: II. Biology and Disease Transmission. Princeton University Press; Princeton, NJ, USA: 1973.

Gupta A.K., Nayduch D., Verma P., Shah B., Ghate H.V., Patole M.S., Shouche Y.S. Phylogenetic characterization of bacteria in the gut of house flies (M usca domestica L.) Fems Microbiol. Ecol. 2012;79:581–593. doi: 10.1111/j.1574-6941.2011.01248.x. PubMed DOI

Khamesipour F., Lankarani K.B., Honarvar B., Kwenti T.E. A systematic review of human pathogens carried by the housefly (Musca domestica L.) BMC Public Health. 2018;18:1049. doi: 10.1186/s12889-018-5934-3. PubMed DOI PMC

Onwugamba F.C., Fitzgerald J.R., Rochon K., Guardabassi L., Alabi A., Kühne S., Grobusch M.P., Schaumburg F. The role of “filth flies” in the spread of antimicrobial resistance. Travel Med. Inf. Dis. 2018;22:8–17. doi: 10.1016/j.tmaid.2018.02.007. PubMed DOI

Chakrabarti S., Kambhampati S., Zurek L. Assessment of house fly dispersal between rural and urban habitats in Kansas, USA. J. Kan. Entomol. Soc. 2010;83:172–188. doi: 10.2317/JKES0809.15.1. DOI

Park R., Dzialo M.C., Spaepen S., Nsabimana D., Gielens K., Devriese H., Crauwels S., Tito R.Y., Raes J., Lievens B., et al. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome. 2019;7:147. doi: 10.1186/s40168-019-0748-9. PubMed DOI PMC

Glaser R.W. The effect of food on longevity and reproduction in flies. J. Exp. Zool. 1923;38:383–412. doi: 10.1002/jez.1400380304. DOI

Shah R.M., Azhar F., Shad S.A., Walker W.B., Azeem M., Binyameen M. Effects of different animal manures on attraction and reproductive behaviors of common house fly, Musca domestica L. Parasitol. Res. 2016;115:3585–3598. doi: 10.1007/s00436-016-5124-0. PubMed DOI

Silbergeld E.K., Graham J., Price L.B. Industrial food animal production, antimicrobial resistance, and human health. Ann. Rev. Public Health. 2008;29:151–169. doi: 10.1146/annurev.publhealth.29.020907.090904. PubMed DOI

Wiegand I., Hilpert K., Hancock R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008;3:163. doi: 10.1038/nprot.2007.521. PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2013.

Bates D., Maechler M., Bolker B., Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Lenth R., Lenth M.R. Package “lsmeans”. Am. Stat. 2018;34:216–221.

Greenberg B. House fly nutrition. 1. Quantitative study of the protein and sugar requirements of males and females. J. Cell Comp. Physiol. 1959;53:169–177. doi: 10.1002/jcp.1030530202. PubMed DOI

Nazari M., Mehrabi T., Hosseini S.M., Alikhani M.Y. Bacterial contamination of adult house flies (Musca domestica) and sensitivity of these bacteria to various antibiotics, captured from Hamadan City, Iran. J. Clin. Diag Res. JCDR. 2017;11:DC04. doi: 10.7860/JCDR/2017/23939.9720. PubMed DOI PMC

Adams T.S., Nelson D.R. Effect of corpus allatum and ovaries on amount of pupal and adult fat body in the housefly, Musca domestica. J. Insect Physiol. 1969;15:1729–1747. doi: 10.1016/0022-1910(69)90006-7. PubMed DOI

Sepehrnia N., Memarianfard L., Moosavi A.A., Bachmann J., Rezanezhad F., Sepehri M. Retention modes of manure-fecal coliforms in soil under saturated hydraulic condition. J. Environ. Manag. 2018;227:209–215. doi: 10.1016/j.jenvman.2018.08.086. PubMed DOI

Larraín P., Salas C. House fly (Musca domestica L.) (Diptera: Muscidae) development in different types of manure. Chil. J. Agric. Res. 2008

Khan H.A.A., Shad S.A., Akram W. Effect of livestock manures on the fitness of house fly, Musca domestica L. (Diptera: Muscidae) Parasitol. Res. 2012;111:1165–1171. doi: 10.1007/s00436-012-2947-1. PubMed DOI

Wang L., Yu Z. Antimicrobial Resistance Arising from Food-Animal Productions and Its Mitigation. IntechOpen; London, UK: 2012.

Shin S.W., Shin M.K., Jung M., Belaynehe K.M., Yoo H.S. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Appl. Environ. Microbiol. 2015;81:5560–5566. doi: 10.1128/AEM.01511-15. PubMed DOI PMC

Dahshan H., Abd-Elall A.M.M., Megahed A.M., Abd-El-Kader M.A., Nabawy E.E. Veterinary antibiotic resistance, residues, and ecological risks in environmental samples obtained from poultry farms, Egypt. Environ. Monit. Assess. 2015;187:2. doi: 10.1007/s10661-014-4218-3. PubMed DOI

Noyes N.R., Yang X., Linke L.M., Magnuson R.J., Cook S.R., Zaheer R., Yang H., Woerner D.R., Geornaras I., McArt J.A. Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. Sci. Rep. 2016;6:1–12. doi: 10.1038/srep24645. PubMed DOI PMC

Granados-Chinchilla F., Rodríguez C. Tetracyclines in food and feedingstuffs: From regulation to analytical methods, bacterial resistance, and environmental and health implications. J. Anal. Methods Chem. 2017;2017 doi: 10.1155/2017/1315497. PubMed DOI PMC

Nmorsi O.P.G., Agbozele G., Ukwandu N.C.D. Some aspects of epidemiology of filth flies: Musca domestica, Musca domestica vicina, Drosophilia melanogaster and associated bacteria pathogens in Ekpoma, Nigeria. Vector Borne Zoonotic Dis. 2007;7:107–117. doi: 10.1089/vbz.2006.0539. PubMed DOI

Zurek L., Ghosh A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 2014;80:3562–3567. doi: 10.1128/AEM.00600-14. PubMed DOI PMC

Wei T., Miyanaga K., Tanji Y. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae) Appl. Microbiol. Biotechnol. 2014;98:8357–8366. doi: 10.1007/s00253-014-5846-9. PubMed DOI

Usui M., Shirakawa T., Fukuda A., Tamura Y. The role of flies in disseminating plasmids with antimicrobial-resistance genes between farms. Microb. Drug Resist. 2015;21:562–569. doi: 10.1089/mdr.2015.0033. PubMed DOI

Food and Drug Administration, U.S. Animal Medicinal Drug Use Clarification Act of 1994. [(accessed on 14 May 2020)]; Available online: https://www.fda.gov/animal-veterinary/acts-rules-regulations/animal-medicinal-drug-use-clarification-act-1994-amduca.

Ciprián A., Palacios J.M., Quintanar D., Batista L., Colmenares G., Cruz T., Romero A., Schnitzlein W., Mendoza S. Florfenicol feed supplemented decrease the clinical effects of Mycoplasma hyopneumoniae experimental infection in swine in México. Res. Vet. Sci. 2012;92:191–196. doi: 10.1016/j.rvsc.2011.01.010. PubMed DOI

Skogerboe T.L., Rooney K.A., Nutsch R.G., Weigel D.J., Gajewski K., Kilgore W.R. Comparative efficacy of tulathromycin versus florfenicol and tilmicosin against undifferentiated bovine respiratory disease in feedlot cattle. Vet Ther. 2005;6:180. PubMed

Frank G.H., Briggs R.E., Duff G.C., Loan R.W., Purdy C.W. Effects of vaccination prior to transit and administration of florfenicol at time of arrival in a feedlot on the health of transported calves and detection of Mannheimia haemolytica in nasal secretions. J. Am. Vet. Med. Assoc. 2002;63:251–256. doi: 10.2460/ajvr.2002.63.251. PubMed DOI

Catry B., Duchateau L., Van de Ven J., Laevens H., Opsomer G., Haesebrouck F., de Kruif A. Efficacy of metaphylactic florfenicol therapy during natural outbreaks of bovine respiratory disease. J. Vet. Pharm. 2008;31:479–487. doi: 10.1111/j.1365-2885.2008.00981.x. PubMed DOI

Rattanapanadda P., Kuo H.-C., Vickroy T.W., Sung C.-H., Rairat T., Lin T.-L., Yeh S.-Y., Chou C.-C. In vitro and in vivo synergistic effects of florfenicol and thiamphenicol in combination against swine Actinobacillus pleuropneumoniae and Pasteurella multocida. Front. Microbiol. 2019;10:2430. doi: 10.3389/fmicb.2019.02430. PubMed DOI PMC

Gonzalez-Martin J.V., Elvira L., Lopez M.C., Villalobos N.P., Lopez-Guerrero E.C., Astiz S. Reducing antibiotic use: Selective metaphylaxis with florfenicol in commercial feedlots. Livest. Sci. 2011;141:173–181. doi: 10.1016/j.livsci.2011.05.016. DOI

White D.G., Hudson C., Maurer J.J., Ayers S., Zhao S., Lee M.D., Bolton L., Foley T., Sherwood J. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J. Clin. Microbiol. 2000;38:4593–4598. doi: 10.1128/JCM.38.12.4593-4598.2000. PubMed DOI PMC

Bischoff K.M., White D.G., Hume M.E., Poole T.L., Nisbet D.J. The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli. Fems Microbiol. Lett. 2005;243:285–291. doi: 10.1016/j.femsle.2004.12.017. PubMed DOI

Mirza S.H., Hart C.A. Plasmid encoded multi-drug resistance in Salmonella typhi from Pakistan. Ann. Trop Med. Parasitol. 1993;87:373–377. doi: 10.1080/00034983.1993.11812781. PubMed DOI

Fernández-Alarcón C., Singer R.S., Johnson T.J. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources. PLoS ONE. 2011;6:e23415. doi: 10.1371/journal.pone.0023415. PubMed DOI PMC

Leverstein-van Hall M.A., Blok H.E.M., Donders A.R.T., Paauw A., Fluit A.C., Verhoef J. Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J. Infect. Dis. 2003;187:251–259. doi: 10.1086/345880. PubMed DOI

Carraro N., Rivard N., Burrus V., Ceccarelli D. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob. Gen. Elem. 2017;7:1–6. doi: 10.1080/2159256X.2017.1304193. PubMed DOI PMC

Meunier D., Jouy E., Lazizzera C., Doublet B., Kobisch M., Cloeckaert A., Madec J.-Y. Plasmid-borne florfenicol and ceftiofur resistance encoded by the floR and blaCMY-2 genes in Escherichia coli isolates from diseased cattle in France. J. Med. Microbiol. 2010;59:467–471. doi: 10.1099/jmm.0.016162-0. PubMed DOI

Barza M. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin. Infect. Dis. 2002;34:S123–S125. doi: 10.1086/340249. PubMed DOI

Hunter J., Shelley J.C., Walton J.R., Hart C.A., Bennett M. Apramycin resistance plasmids in Escherichia coli: Possible transfer to Salmonella typhimurium in calves. Epidemiol. Infect. 1992;108:271–278. doi: 10.1017/S0950268800049748. PubMed DOI PMC

Fukuda A., Usui M., Okubo T., Tamura Y. Horizontal transfer of plasmid-mediated cephalosporin resistance genes in the intestine of houseflies (Musca domestica) Microbol. Drug Resist. 2016;22:336–341. doi: 10.1089/mdr.2015.0125. PubMed DOI

Petridis M., Bagdasarian M., Waldor M.K., Walker E. Horizontal transfer of shiga toxin and antibiotic resistance genes among Escherichia coli strains in house fly (Diptera: Muscidae) gut. J. Med. Entomol. 2006;43:288–295. doi: 10.1603/0022-2585(2006)043[0288:HTOSTA]2.0.CO;2. PubMed DOI

Akhtar M., Hirt H., Zurek L. Horizontal transfer of the tetracycline resistance gene tetM mediated by pCF10 among Enterococcus faecalis in the house fly (Musca domestica L.) alimentary canal. Microbol. Ecol. 2009;58:509–518. doi: 10.1007/s00248-009-9533-9. PubMed DOI

Alam M.J., Zurek L. Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl. Environ. Microbiol. 2004;70:7578–7580. doi: 10.1128/AEM.70.12.7578-7580.2004. PubMed DOI PMC

Bahrndorff S., Ruiz-González A., de Jonge N., Nielsen J.L., Skovgård H., Pertoldi C. Integrated genome-wide investigations of the housefly, a global vector of diseases reveal unique dispersal patterns and bacterial communities across farms. BMC Genom. 2020;21:66. doi: 10.1186/s12864-020-6445-z. PubMed DOI PMC

Bahrndorff S., de Jonge N., Skovgård H., Nielsen J.L. Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS ONE. 2017;12:e0169753. doi: 10.1371/journal.pone.0169753. PubMed DOI PMC

Rahuma N., Ghenghesh K.S., Ben Aissa R., Elamaari A. Carriage by the housefly (Musca domestica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya. Ann. Trop. Med. Parasitol. 2005;99:795–802. doi: 10.1179/136485905X65134. PubMed DOI

Cousins M., Sargeant J.M., Fisman D., Greer A.L. Modelling the transmission dynamics of Campylobacter in Ontario, Canada, assuming house flies, Musca domestica, are a mechanical vector of disease transmission. R. Soc. Open Sci. 2019;6:181394. doi: 10.1098/rsos.181394. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...