Evaluation of antifungal activity of cinnamaldehyde against Cryptococcus neoformans var. grubii

. 2020 Dec ; 65 (6) : 973-987. [epub] 20200702

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32617865
Odkazy

PubMed 32617865
DOI 10.1007/s12223-020-00806-4
PII: 10.1007/s12223-020-00806-4
Knihovny.cz E-zdroje

Cryptococcosis is a potentially fatal fungal disease which has aggrandized with the emergence of AIDS and antifungal resistance. The currently used antifungals lack the broad-spectrum activity and result in several toxicities during long treatment regimens. Thus, the present study aims to evaluate the antifungal activity of cinnamaldehyde against Cryptococcus neoformans var. grubii, the etiological agent of the disease. Quantitative and qualitative in vitro fungal susceptibilities were carried out by minimum inhibitory concentration assay, flow cytometric analysis, and confocal microscopy. Micromorphological alterations were studied through scanning electron and light microscopies. "In vivo" antifungal efficacy of cinnamaldehyde was assessed. Cinnamaldehyde showed antifungal activity against C. neoformans in a dose-dependent manner. A concentration of 1.37 mg/mL of cinnamaldehyde was found to be inhibitory and fungicidal while the low concentration (0.68 mg/mL) was found to induce micromorphological changes and formation of giant/titan-like cells in this pathogen. The reparative activity of cinnamaldehyde and its ability to prolong the life even after the advent of cryptococcal meningitis in mice was also noticed. This study suggests potent anti-cryptococcal activity of cinnamaldehyde. Though, it has a couple of limitations like allergy and low bioavailability. However, these problems can be circumvented by developing suitable analogs of the compound. It, therefore, could be used as a therapeutic option against cryptococcosis and cryptococcal meningitis. Moreover, the evaluation of its pharmacokinetic and pharmacodynamic properties is desirable.

Zobrazit více v PubMed

Aebi HE (1974) Catalase methods of enzymatic analysis, vol 2. Academic press, New York, pp 673–684

Busse O (1894) Über parasitäre Zelleinschlüsse und ihre Züchtung Zbl Bakt I Abt Orig 16: 175-180

Casadevall A, Perfect JR (1998) Cryptococcus neoformans. ASM press, Washington, DC

Casadevall A, Coelho C, Alanio A (2018) Mechanisms of Cryptococcus neoformans-mediated host damage. Front Immunol 9:855 PubMed PMC

Center for disease control and prevention (2018) Treatment of C. neoformans infection. Accessed on 01 May, 2018, https://www.cdc.gov/fungal/diseases/cryptococcosis-neoformans/treatment.html

Clinical and Laboratory Standards Institute (2017) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard M27 4th ed

Clinical and Laboratory Standards Institute (2018) Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline M44 3rd ed

Courchesne WE, Tunc M, Liao S (2009) Amiodarone induces stress responses and calcium flux mediated by the cell wall in Saccharomyces cerevisiae. Can J Microbiol 55:288–303 PubMed

Cruickshank JG, Cavill R, Jelbert M (1973) Cryptococcus neoformans of unusual morphology. Appl Microbiol 25:309–312 PubMed PMC

D’Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J (2001) Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21:3179–3191 PubMed PMC

Dambuza IM, Drake T, Chapuis A, Zhou X, Correia J, Taylor-Smith L, LeGrave N, Rasmussen T, Fisher MC, Bicanic T, Harrison T, Jaspars M, May RC, Brown GD, Yuecel R, MacCallum DM, Ballou ER (2018) The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathog 14:e1006978 PubMed PMC

Das K, Samanta L, Chainy GB (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204

DeJong RJ, Miller LM, Molina-Cruz A, Gupta L, Kumar S, Barillas-Mury C (2007) Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae. PNAS 104:2121–2126 PubMed

Denning DW, Armstrong RW, Lewis BH (1991) Stevens DA Elevated cerebrospinal fluid pressures in patients with cryptococcal meningitis and acquired immunodeficiency syndrome. Am J Med 9:267–272

Dromer F, Mathoulin S, Dupont B, Laporte A (1996) Epidemiology of cryptococcosis in France: a 9-year survey (1985–1993). French Cryptococcosis Study Group. Clin Infect Dis 23:82–90 PubMed

Green L, Petersen B, Steimel L, Haeber P, Current W (1994) Rapid determination of antifungal activity by flow cytometry. J Clin Microbiol 32:1088–1091 PubMed PMC

Grotto D, Maria LS, Valentini J, Paniz C, Schmitt G, Garcia SC, Pomblum VJ, Rocha JBT, Farina M (2009) Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Química Nova 32:169–174

Gupta C, Kumari A, Garg AP (2012) Comparative study of cinnamon oil and clove oil in some oral microbiota. Acta Biomed Atenei Parmensis 82:197–199

Hommel B, Mukaremera L, Cordero RJ, Coelho C, Desjardins CA, Sturny-Leclère A, Janbon G, Perfect JR, Fraser JA, Casadevall A, Cuomo CA, Dromer F, Nielsen K, Alanio A (2018) Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathog 14:e1006982 PubMed PMC

Khawcharoenporn T, Apisarnthanarak A, Mundy LM (2007) Non-neoformans cryptococcal infections: a systematic review. Infection 35:51–58 PubMed PMC

Khoubnasabjafari M, Ansarin K, Jouyban A (2015) Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. BioImpacts 5:123–127 PubMed PMC

Kim JH, Faria NC, Martins MDL, Chan KL, Campbell BC (2012) Enhancement of antimycotic activity of amphotericin B by targeting the oxidative stress response of Candida and Cryptococcus with natural dihydroxybenzaldehydes. Front Microbiol 3:261 PubMed PMC

Kong JO, Lee SM, Moon YS, Lee SG, Ahn YJ (2007) Nematicidal activity of cassia and cinnamon oil compounds and related compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). J Nematol 39:31–36 PubMed PMC

Kumari P, Mishra R, Arora N, Chatrath A, Gangwar R, Roy P, Prasad R (2017) Antifungal and anti-biofilm activity of essential oil active components against Cryptococcus neoformans and Cryptococcus laurentii. Front Microbiol 8:2161 PubMed PMC

Lin X, Heitman J (2006) The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 60:69–105 PubMed

Litvintseva AP, Kestenbaum L, Vilgalys R, Mitchell TG (2005) Comparative analysis of environmental and clinical populations of Cryptococcus neoformans. J Clin Microbiol 43:556–564 PubMed PMC

Love GL, Boyd GD, Greer DL (1985) Large Cryptococcus neoformans isolated from brain abscess. J Clin Microbiol 22:1068–1070 PubMed PMC

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 PubMed PMC

Martinez SC, Tanabe K, Cras-Méneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA (2008) Inhibition of Foxo1 protects pancreatic islet β-cells against fatty acid and ER-stress induced apoptosis. Diabetes 57:846–859 PubMed

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358 PubMed

Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE (2006) Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med 34:511–522 PubMed

Perfect JR (2006) Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res 6:463–468 PubMed

Perfect JR (2016) Is there an emerging need for new antifungals? Expert Opin Emerg Drugs 21:129–130 PubMed

Pina-Vaz C, Costa-de-Oliveira S, Rodrigues AG, Espinel-Ingroff A (2005) Comparison of two probes for testing susceptibilities of pathogenic yeasts to voriconazole, itraconazole, and caspofungin by flow cytometry. J Clin Microbiol 43:4674–4679 PubMed PMC

Powderly WG (2008) Dosing amphotericin B in cryptococcal meningitis. Clin Infect Dis 47:131–132 PubMed

Sanla-Ead N, Jangchud A, Chonhenchob V, Suppakul P (2012) Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose based packaging films. Packag Technol Sci 25:7–17

Schmertmann LJ, Bodley K, Meyer W, Malik R, Krockenberger MB (2018) Multi-locus sequence typing as a tool to investigate environmental sources of infection for cryptococcosis in captive birds. Med Mycol 57:653–657

Shreaz S, Bhatia R, Khan N, Muralidhar S, Basir SF, Manzoor N, Khan LA (2011) Spice oil cinnamaldehyde exhibits potent anticandidal activity against fluconazole resistant clinical isolates. Fitoterapia 82:1012–1020 PubMed

Shreaz S, Wani WA, Behbehani JM, Raja V, Irshand M, Karched M et al (2016) Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 112:116–131 PubMed

Sies HE (1997) Physiological society symposium: impaired endothelial and smooth muscle cell function in oxidative stress. Exp Physiol 82:291–295 PubMed

Singh K, Ilkit M, Shokohi T, Tolooe A, Malik R, Seyedmousavi S (2017a) In: Seyedmousavi S, de Hoog GS, Guillot J, Verweij PE (eds) Cryptococcosis: emergence of Cryptococcus gattii in animals and zoonotic potential in emerging and epidemic fungal infections in animals. Springer International Publishing AG

Singh K, Rani J, Neelabh RGK, Singh M (2017b) The Southeastern Asian house mouse (Mus musculus castaneus Linn.) as a new passenger host for Cryptococcus neoformans var. grubii molecular type VNI. Med Mycol 55:820–827 PubMed

Sloan DJ, Parris V (2014) Cryptococcal meningitis: epidemiology and therapeutic options. Clin Epidemiol 6:169–182 PubMed PMC

Song F, Li H, Sun J, Wang S (2013) Protective effects of cinnamic acid and cinnamic aldehyde on isoproterenol-induced acute myocardial ischemia in rats. J Ethnopharmacol 150:125–130 PubMed

Trevijano-Contador N, de Oliveira HC, Garcia-Rodas R, Rossi SA, Llorente I, Zaballos A, Janbon G, Ariño J, Zaragoza O (2018) Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog 14:e1007007 PubMed PMC

Yuan J, Dieter MP, Bucher JR, Jameson CW (1993) App of microencapsulation for toxicology studies: III. Bioavailability of microencapsulated cinnamaldehyde. Toxicol Sci 20:83–87

Zaragoza O, Alvarez M, Telzak A, Rivera J, Casadevall A (2007) The relative susceptibility of mouse strains to pulmonary Cryptococcus neoformans infection is associated with pleiotropic differences in the immune response. Infect Immun 75:2729–2739 PubMed PMC

Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6:e1000945 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...