Spatial-temporal variability of aerosol sources based on chemical composition and particle number size distributions in an urban settlement influenced by metallurgical industry
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
P503/12/G147
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_013/0001315
MEYS of the Czech Republic
DEAC02-05CH11231
DOE Office of Science User Facility
PubMed
32623683
DOI
10.1007/s11356-020-09694-0
PII: 10.1007/s11356-020-09694-0
Knihovny.cz E-resources
- Keywords
- Elemental composition, Highly time-resolved parallel measurements, Local heating, Metallurgical industry, Nanoparticles, Regional transport,
- MeSH
- Aerosols analysis MeSH
- Air Pollutants analysis MeSH
- Environmental Monitoring MeSH
- Particulate Matter analysis MeSH
- Particle Size MeSH
- Cities MeSH
- Air Pollution analysis MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Cities MeSH
- Names of Substances
- Aerosols MeSH
- Air Pollutants MeSH
- Particulate Matter MeSH
The Moravian-Silesian region of the Czech Republic with its capital city Ostrava is a European air pollution hot spot for airborne particulate matter (PM). Therefore, the spatiotemporal variability assessment of source contributions to aerosol particles is essential for the successful abatement strategies implementation. Positive Matrix Factorization (PMF) was applied to highly-time resolved PM0.15-1.15 chemical composition (1 h resolution) and particle number size distribution (PNSD, 14 nm - 10 μm) data measured at the suburban (Ostrava-Plesná) and urban (Ostrava-Radvanice) residential receptor sites in parallel during an intensive winter campaign. Diel patterns, meteorological variables, inorganic and organic markers, and associations between the chemical composition factors and PNSD factors were used to identify the pollution sources and their origins (local, urban agglomeration and regional). The source apportionment analysis resolved six and four PM0.15-1.15 sources in Plesná and Radvanice, respectively. In Plesná, local residential combustion sources (coal and biomass combustion) followed by regional combustion sources (residential heating, metallurgical industry) were the main contributors to PM0.15-1.15. In Radvanice, local residential combustion and the metallurgical industry were the most important PM0.15-1.15 sources. Aitken and accumulation mode particles emitted by local residential combustion sources along with common urban sources (residential heating, industry and traffic) were the main contributors to the particle number concentration (PNC) in Plesná. Additionally, accumulation mode particles from local residential combustion sources and regional pollution dominated the particle volume concentration (PVC). In Radvanice, local industrial sources were the major contributors to PNC and local coal combustion was the main contributor to PVC. The source apportionment results from the complementary datasets elucidated the relevance of highly time-resolved parallel measurements at both receptor sites given the specific meteorological conditions produced by the regional orography. These results are in agreement with our previous studies conducted at this site. Graphical abstract.
Air Quality Research Center University of California Davis One Shields Ave Davis CA 95616 5270 USA
Center for Air Resources Engineering and Science Clarkson University Potsdam NY 13699 5708 USA
See more in PubMed
Almeida AM, Pio CA, Freitas MC, Reis MA, Trancoso MA (2005) Source apportionment of fine and coarse particulate matter in sub-urban area at the Western European Coast. Atmos Environ 39:3127–3138
Ancelet T, Davy PK, Mitschell T, Trompetter WJ, Markwitz A, Weatherburn DC (2012) Source of particulate matter pollution in a small New Zealand city. Environ. Sci. Technol. 46:4767–4774
Ancelet T, Davy PK, Trompetter WJ, Markwitz A, Weatherburn DC (2014) Sources and transport of particulate matter on an hourly time-scale during the winter in a New Zealand urban valley. Urban Clim 10:644–655
Beddows DCS, Harrison RM, Green DC, Fuller GW (2015) Receptor modeling of both particle composition and size distribution. Atmos Chem Phys 15:10107–10125
Carslaw DC, Ropinks K (2012) Openair e an R package for air quality data analysis. Environ Model Soft 27-28:52–61
Caseiro A, Bauer H, Schmidl C, Pio CA, Puxbaum H (2009) Wood burning impact on PM10 in three Austrian regions. Atmos Environ 43:2186–2195
Černikovský L, Krejčí B, Blažek Z, Volná V (2016) Transboundary air pollution transport in the Czech-polish border region between the cities of Ostrava and Katovice. Cent Eur J Public Health 24:45–50
Cheng YH, Chao YC, Wu CH, Tsai CJ, Uang SN, Shih TS (2008) Measurement of ultrafine particles concentrations and size distribution in an iron foundry. J Hazard Mater 158:124–130
CHMI, Czech Hydrometeorological Institute (2018) Air pollution in the Czech Republic in:2018 http://portal.chmi.cz/files/portal/docs/uoco/isko/grafroc/18groc/gr18en/KO_rocenka_2018.pdf
Clarke LB (1993) The fate of trace elements during coal combustion and gasification: an overview. Fuel 72(6):731–736
Cohen DD, Crawford J, Stelcer E, Bac VT (2010) Characterisation and source apportionment of fine particulate matter at Hanoi 2001 to 2008. Atmos Environ 44:230–328
Cusack M, Pérez N, Pey J, Alastuey A, Querol X (2013) Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study. Atmos Chem Phys 13:5173–5187
Dall'Osto M, Booth MJ, Smith W, Fisherb R, Harrison RM (2008) A study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks. Aerosol Sci Technol 42:981–991
DeGaetano AT, Doherty OM (2004) Temporal, spatial and meteorological variations in hourly PM2.5 concentration extremes in New York City. Atmos Environ 38:1547–1558
Dostál, M., Pastorková, A., Rychlík, S., Rychlíková, E., Švecová, V., Schallerová, E., Šrám, R.J., 2013. Comparison of child morbidity in regions of Ostrava, Czech Republic, with different degrees of pollution: a retrospective cohort study. Environ Health 12, 1–11
Duan M, Zhuang G, Li X, Tao H, Zhuang Y (2004) The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmos Environ 38:3443–3452
Finkelman R, Trace B, minor elements in coal. In Organic Geochemistry; Engel, M. H., Macko, S. A. (eds) (1993) Plenum Press: New York:593–607
Guan Q, Cai A, Wang F, Yang L, Xu C, Liu Z (2017) Spatio-temporal variability of particulate matter in the key part of Gansu Province, Western China. Environ Pollut 230:189–198
Guerreiro CBB, Foltescu V, de Leeuw F (2014) Air quality status and trends in Europe. Atmos Environ 98:376–384
Harrison RM, Beddows DCS, Dall'Osto M (2011) PMF analysis of wide range particle size spectra collected on a major highway. Environ. Sci. Technol. 45:5522–5528
Heal MR, Kumar P, Harrison R (2012) Particles, air quality, policy and health. Chem Soc Rev 41:6606–6630
Hopke PK (2016) A review of receptor modeling methods for source apportionment. Journal of Air and Waste Management Association 66:237–259
Hovorka, J., Pokorná, P., Hopke, P.K., Křůmal, K., Mikuška, P., Píšová, M., 2015. Wood combustion, a dominant source of winter aerosol in residential district in proximity to a large
Kasumba J, Hopke PK, Chalupa DC, Utell MJ (2009) Comparison of sources of submicron particle number concentrations measured at two sites in Rochester. NY Sci of the Total Environ 407:5071–5084
Kim, E., Hopke P.K., Larson, T.V., Covert, D.S., 2004. Analysis of ambient particle size distributions using Unmix and positive matrix factorization Environ. Sci & Technol 38, 202–209
Kozáková J, Pokorná P, Vodička P, Ondráčková L, Ondráček J, Křůmal K, Mikuška P, Hovorka J, Moravec P, Schwarz J (2019) Influence of regional air pollution transport at a European air pollution hotspot. Environ Sci Pollut Res 26:1675–1692
Kumar P, Hopke PK, Raja S, Casuccio G, Lersch TL, West RR (2012) Characterization and heterogeneity of coarse particles across an urban area. Atmospheric Environ 46:339–359
Lagudu, U.R.K., Raja, S., Hopke, P.K., Chalupa, D.C., Utell, M.J., Casuccio, G.; Lersch, T. L, West, R.R., 2011. Environ. Sci Technol 45,8, 3288–3296
Leoni C, Hovorka J, Docekalova V, Cajthaml T, Marvanova S (2016) Source impact determination using airborne and ground measurements of industrial plumes. Environ. Sci. Technol. 50:9881–9888
Leoni C, Pokorná P, Hovorka J, Masiol M, Topinka J, Zhao Y, Křůmal K, Cliff S, Mikuška P, Hopke PK (2018) Source apportionment of number size distributions and mass chemical composition in a European air pollution hot spot. Environ Pollut 234:145–154
Li XH, Yang K, Han JZ, Ying Q, Hopke PK (2019) Sources of humic-like substances (HULIS) in PM2.5 in Beijing: receptor modeling approach. Sci Total Environ 671:765–775
Masiol M, Vu TV, Beddows DCS, Harrison RM (2016) Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy). Atmos Environ 139:56–74
Masiol M, Hopke PK, Felton HD, Frank BP, Rattigan OV, Wurth MJ, LaDuke GH (2017) Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York City. Atmos Environ 148:215–229
Mkoma SL, Kawamura K, Fu PQ (2013) Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmos Chem Phys 13:10325–10338
Moon C (2001) Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos Environ 35:1–32
Moreno T, Kojima T, Amato A, Lucarelli F, de la Rosa J, Calzolai G, Nava S, Chiari M, Alastuey A, Querol X, Gibbons W (2013) Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality. Atmos Chem Phys 13:1411–1424
Ogulei D, Hopke PK, Chalupa DC, Utell MJ (2007a) Modeling source contributions to submicron particle number concentrations measured in Rochester. New York Aerosol Sci and Technol 41:179–2001
Ogulei D, Hoppke PK, Ferro AR, Jaques PA (2007b) Factor analysis of submicron particle size distributions near a major United States-Canada trade bridge. Journal of the Air & Waste Management Assoc 57:190–203
Pancras JP, Landis MS, Norris GA, Vedantham R, Dvonch JT (2013) Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data. Sci Total Environ 448:2–13
Petit JE, Amodeo T, Meleux F, Bessagnet B, Menut L, Grenier D, Pellan Y, Ockler A, Rocq B, Gros V, Sciare J, Favez O (2017) Characterising an intense PM pollution episode in March 2015 in France from multi-site approach and near real time data: climatology, variabilities, geographical origins and model evaluation. Atmos Environ 155:68–84
Pey J, Querol X, Alastuey A, Rodríguez S, Putaud JP, Van Dingenen R (2009) Source apportionment of urban fine and ultrafine particle number concentration in a Western Mediterranean city. Atmos Environ 43:4407–4415
Pokorná P, Hovorka J, Kroužek J, Hopke PK (2013) Particulate matter source apportionment in a village situated in industrial region of Central Europe. J Air Waste Manag Assoc 63:1412–1421
Pokorná P, Hovorka J, Klán M, Hopke PK (2015) Source apportionment of size resolved particulate matter in European air pollution hot spot. Sci Total Environ 502:172–183
Pokorná P, Hovorka J, Hopke PK (2016) Elemental composition and source identification of very fine aerosol particles in a European air pollution hot-spot. Atmospheric Pollution Research 7:671–679
Polissar AV, Hopke PK, Poirot RL (2001) Atmospheric aerosol over Vermont: chemical composition and sources. Environmental Science & Technology 35:4604–4621
Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J, de la Rosa J, Sánchez de la Campa A, Artíñano B, Salvador P, García Dos Santos S, Fernández-Patier R, Moreno-Grau S, Negral L, Minguillón MC, Monfort E, Gil JI, Inza A, Ortega LA, Santamaría JM, Zabalza J (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231
Riffault V, Arnds J, Marris H, Mbengue S, Setyan A, Alleman LY, Deboudt K, Flament P, Augustin P, Delbarre H, Wenger J (2015) Fine and ultrafine particles in the vicinity of industrial activities: a review. Environ Sci Technol 45(21):2305–2356
Rogula-Kozłowska W, Klejnowski K (2013) Submicrometer aerosol in rural and urban backgrounds in southern Poland: primary and secondary components of PM1. Bull Environ Contam Toxicol 90:103–109
Rogula-Kozłowska W, Klejnowski K, Rogula-Kopiec P, Mathews B, Szopa S (2012) A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland. Bull Environ Contam Toxicol 88:722–729
Rogula-Kozłowska W, Błaszczak B, Szopa S, Klejnowski K, Sówka I, Zwoździak A, Jabłońska M, Mathews B (2013a) PM2.5 in the central part of Upper Silesia, Poland: concentrations, elemental composition, andmobility of components. EnvironMonit Assess 185:581–601
Rogula-Kozłowska W, Kozielska B, Klejnowski K, Szopa S (2013b) Hazardous compounds in urban PM in the central part of Upper Silesia (Poland) in winter. Arch Environ Prot 39:53–65
Shen S, Jaques PA, Zhu Y, Geller MD, Sioutas C (2002) Evaluation of the SMPS–APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5–10) concentrations. Atmos Environ 36:3939–3950
Sowlat MH, Hasheminassab S, Sioutas C (2016) Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF). Atmos Chem Phys 16:4849–4866
Squizzato S, Masiol M, Emami F, Chalupa DC, Utell MJ, Rich DQ, Hopke PK (2019) Long-term changes of source apportioned particle number concentrations in a metropolitan area of the northeastern United States. Atmosphere 10(27):1–17
Šram RJ, Binková B, Dostál M, Merkerová-Dostalová M, Líbalová H, Milcová A, Rossner P, Rossernová A, Schmuczerová J, Švecová V, Topinka J, Votavová H (2013) Health impact of air pollution to children. Int J Hyg Environ Health 216:533–540
Topinka J, Rossner P, Milcová A, Schmuczerová J, Penčíková K, Rossnerová A, Ambrož A, Štolcpartová J, Bendl J, Hovorka J, Machala M (2015) Day-to-day variability of toxic events induced by organic compounds bound to size segregated atmospheric aerosol. Environ Pollut 202:135–145
Vejahati F, Xu Z, Gupta R (2010) Trace elements in coal: associations with coal and minerals and their behavior during coal utilization − a review. Fuel 89(4):904–911
Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849
Vu T, Delgado Saborit JM, Harrison RM (2015) Review: particle number size distribution from seven major sources and implications for source apportionment studies. Atmos Environ 122:144–132
Vu, T.V., Beddows, D.C.S., Delgado-Saborit, J.M., Harrison, R.M., 2016. Source apportionment of the lung dose of ambient submicrometre particulate matter. Aerosol Air Qual. Res. 16 (7), 1548–1557
Waked A, Bourin A, Michoud V, Perdrix E, Alleman LY, Sauvage S, Delaunay T, Vermeesch S, Petit JE, Riffault V (2018) Investigation of the geographical origins of PM10 based on long, medium and short-range air mass back-trajectories impacting Northern France during the period 2009-2013. Atmos Environ 193:143–152
Wang Q, Shao M, Liu Y, William K, Paul G, Li X, Liu Y, Lu S (2007) Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmos Environ 41:8380–8390
Wang YG, Hopke PK, Utell MJ (2012) Urban-scale seasonal and spatial variability of ultrafine particle number concentrations. Water. Air and Soil Pollution 223(5):2223–2235
Weitkamp EA, Lipsky EM, Pancras PJ, Ondov JM, Polidori A, Turpin BJ, Robinson AL (2005) Fine particle emission profile for a large coke production facility based on highly time-resolved fence line measurements. Atmos Environ 39(36):6719–6733
Zhou L, Hopke PK, Paatero P, Ondov JM, Pancras JP, Pekney NJ, Davidson CI (2004) Advanced factor analysis for multiple time resolution aerosol composition data. Atmos Environ 38:4909–4920
Zhou, L., Kim, E., Hopke, PK., 2005a. Mining airborne particulate size distribution data by positive matrix factorization. J. of Geophysical Research 110, D07S19
Zhou, L., Hopke, P.K., Stanier, C.O., Pandis, S.N., Ondov, J.M., Pancras, J.P., 2005b. Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization J. of Geophysical Research 110, D07S18
Zíková N, Wang YG, Yang FM, Li XH, Tian M, Hopke PK (2016) On the source contribution to Beijing PM2.5 concentrations. Atmos Environ 134:84–95