Design, synthesis, and in vitro evaluation of aza-peptide aldehydes and ketones as novel and selective protease inhibitors

. 2020 Dec ; 35 (1) : 1387-1402.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32633155

Grantová podpora
R01 GM099040 NIGMS NIH HHS - United States
R21 AI126296 NIAID NIH HHS - United States

Aza-peptide aldehydes and ketones are a new class of reversible protease inhibitors that are specific for the proteasome and clan CD cysteine proteases. We designed and synthesised aza-Leu derivatives that were specific for the chymotrypsin-like active site of the proteasome, aza-Asp derivatives that were effective inhibitors of caspases-3 and -6, and aza-Asn derivatives that inhibited S. mansoni and I. ricinus legumains. The crystal structure of caspase-3 in complex with our caspase-specific aza-peptide methyl ketone inhibitor with an aza-Asp residue at P1 revealed a covalent linkage between the inhibitor carbonyl carbon and the active site cysteinyl sulphur. Aza-peptide aldehydes and ketones showed no cross-reactivity towards cathepsin B or chymotrypsin. The initial in vitro selectivity of these inhibitors makes them suitable candidates for further development into therapeutic agents to potentially treat multiple myeloma, neurodegenerative diseases, and parasitic infections.

Zobrazit více v PubMed

Proulx C, Sabatino D, Hopewell R, et al. . Azapeptides and their therapeutic potential. Future Med Chem 2011;3:1139–64. PubMed

Aubin S, Martin B, Delcros JG, et al. . Retro hydrazino-azapeptoids as peptidomimetics of proteasome inhibitors. J Med Chem 2005;48:330–4. PubMed

Graybill TL, Ross MJ, Gauvin BR, et al. . Synthesis and evaluation of azapeptide-derived inhibitors of serine and cysteine proteases. Bioorg Med Chem Lett 1992;2:1375–80.

Ekici OD, Götz MG, James KE, et al. . Aza-peptide michael acceptors: a new class of inhibitors specific for caspases and other clan cd cysteine proteases. J Med Chem 2004;47:1889–92. PubMed

Asgian JL, James KE, Li ZZ, et al. . Aza-peptide epoxides: a new class of inhibitors selective for clan cd cysteine proteases. J Med Chem 2002;45:4958–60. PubMed

James KE, Asgian JL, Li ZZ, et al. . Design, synthesis, and evaluation of aza-peptide epoxides as selective and potent inhibitors of caspases-1, -3, -6, and -8. J Med Chem 2004;47:1553–74. PubMed

Götz MG, James KE, Hansell E, et al. . Aza-peptidyl michael acceptors. A new class of potent and selective inhibitors of asparaginyl endopeptidases (legumains) from evolutionarily diverse pathogens. J Med Chem 2008;51:2816–32. PubMed

Löser R, Frizler M, Schilling K, Gütschow M. Azadipeptide nitriles: highly potent and proteolytically stable inhibitors of papain-like cysteine proteases. Angew Chem Int Ed Engl 2008;47:4331–4. PubMed

Schmitz J, Beckmann AM, Dudic A, et al. . 3-Cyano-3-aza-β-amino acid derivatives as inhibitors of human cysteine cathepsins. ACS Med Chem Lett 2014;5:1076–81. PubMed PMC

Bochtler M, Ditzel L, Groll M, et al. . The proteasome. Annu Rev Biophys Biomol Struct 1999; 28:295–317. PubMed

Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994;79:13–21. PubMed

Dahlmann B. Role of proteasomes in disease. BMC Biochem 2007;8(Suppl 1): S3. PubMed PMC

Delcros JG, Floc'h MB, Prigent C, Arlot-Bonnemains Y. Proteasome inhibitors as therapeutic agents: current and future strategies. Curr Med Chem 2003;10:479–503. PubMed

Zhou HJ, Aujay MA, Bennett MK, et al. . Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (pr-047). J Med Chem 2009;52:3028–38. PubMed

Demo SD, Kirk CJ, Aujay MA, et al. . Antitumor activity of pr-171, a novel irreversible inhibitor of the proteasome. Cancer Res 2007;67:6383–91. PubMed

Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004;5:417–21. PubMed

Meregalli C. An overview of bortezomib-induced neurotoxicity. Toxics 2015;3:294–303. PubMed PMC

Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 2017;14:417–33. PubMed PMC

Park JE, Miller Z, Jun Y, et al. . Next-generation proteasome inhibitors for cancer therapy. Transl Res 2018;198:1–16. PubMed PMC

Waxman AJ, Clasen S, Hwang WT, et al. . Carfilzomib-associated cardiovascular adverse events a systematic review and meta-analysis. JAMA Oncol 2018;4:e174519. PubMed PMC

Kumar S, Moreau P, Hari P, et al. . Management of adverse events associated with ixazomib plus lenalidomide/dexamethasone in relapsed/refractory multiple myeloma. Br J Haematol 2017;178:571–82. PubMed PMC

Salvesen GS. Caspases and apoptosis. Essays Biochem 2002;38:9–19. PubMed

Salvesen GS. Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 2002;9:3–5. PubMed

Schulz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 1999;45:421–9. PubMed

Thornberry NA, Peterson EP, Zhao JJ, et al. . Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 1994;33:3934–40. PubMed

Thornberry NA, Rano TA, Peterson EP, et al. . A combinatorial approach defines specificities of members of the caspase family and granzyme b. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997;272:17907–11. PubMed

Thornberry NA. The caspase family of cysteine proteases. Br Med Bull 1997;53:478–90. PubMed

Thornberry NA. Caspases: key mediators of apoptosis. Chem Biol 1998;5:R97–103. PubMed

Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci 2011;34:646–56. PubMed

Ishii S. Legumain: asparaginyl endopeptidase. Meth. Enzymol 1994;244:604–15. PubMed

Abdul Alim M, Tsuji N, Miyoshi T, et al. . Characterization of asparaginyl endopeptidase, legumain induced by blood feeding in the ixodid tick haemaphysalis longicornis. Insect Biochem Mol Biol 2007;37:911–22. PubMed

Liu C, Sun C, Huang H, et al. . Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res 2003;63:2957–64. PubMed

Chen JM, Dando PM, Rawlings ND, et al. . Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem 1997;272:8090–8. PubMed

Hara-Nishimura I, Inoue K, Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 1991;294:89–93. PubMed

Davis AH, Nanduri J, Watson DC. Cloning and gene expression of schistosoma mansoni protease. J Biol Chem 1987;262:12851–5. PubMed

Sojka D, Hajdusek O, Dvorak J, et al. . Irae: an asparaginyl endopeptidase (legumain) in the gut of the hard tick ixodes ricinus. Int J Parasitol 2007;37:713–24. PubMed PMC

Delcroix M, Sajid M, Caffrey CR, et al. . A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 2006;281:39316–29. PubMed

Sajid M, McKerrow JH, Hansell E, et al. . Functional expression and characterization of schistosoma mansoni cathepsin b and its trans-activation by an endogenous asparaginyl endopeptidase. Mol Biochem Parasitol 2003;131:65–75. PubMed

Kilpatrick AM, Dobson ADM, Levi T, et al. . Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos Trans R Soc Lond B Biol Sci 1722;2017:372. PubMed PMC

Steinmann P, Keiser J, Bos R, et al. . Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 2006;6:411–25. PubMed

Kaiser M, Milbradt AG, Siciliano C, et al. . Tmc-95a analogues with endocyclic biphenyl ether group as proteasome inhibitors. Chem Biodivers 2004;1:161–73. PubMed

Caffrey CR, Mathieu MA, Gaffney AM, et al. . Identification of a cdna encoding an active asparaginyl endopeptidase of schistosoma mansoni and its expression in pichia pastoris. FEBS Lett 2000;466:244–8. PubMed

Fang B, Boross PI, Tozser J, Weber IT. Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition. J Mol Biol 2006;360:654–66. PubMed

Stennicke HR, Salvesen GS. Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 1997;272:25719–23. PubMed

Liebschner D, Afonine PV, Baker ML, Bunkoczi G, et al. . Macromolecular structure determination using x-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr D Struct Biol 2019;75:861–77. PubMed PMC

Moriarty NW, Grosse-Kunstleve RW, Adams PD. Electronic ligand builder and optimization workbench (elbow): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr 2009;65:1074–80. PubMed PMC

Moriarty NW, Draizen EJ, Adams PD. An editor for the generation and customization of geometry restraints. Acta Crystallogr D Struct Biol 2017;73:123–30. PubMed PMC

Afonine PV, Grosse-Kunstleve RW, Echols N, et al. . Towards automated crystallographic structure refinement with phenix.Refine. Acta Crystallogr D Biol Crystallogr 2012;68:352–67. PubMed PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Crystallogr D Biol Crystallogr 2010;66:486–501. PubMed PMC

Mathieu MA, Bogyo M, Caffrey CR, et al. . Substrate specificity of schistosome versus human legumain determined by p1-p3 peptide libraries. Mol Biochem Parasitol 2002;121:99–105. PubMed

Bogyo M, Shin S, McMaster JS, Ploegh HL. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem Biol 1998;5:307–20. PubMed

Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8:739–58. PubMed

Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998;8:397–403. PubMed

Rock KL, Gramm C, Rothstein L, et al. . Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on mhc class i molecules. Cell 1994;78:761–71. PubMed

Rotonda J, Nicholson DW, Fazil KM, et al. . The three-dimensional structure of apopain/cpp32, a key mediator of apoptosis. Nat Struct Biol 1996;3:619–25. PubMed

Mittl PR, Di Marco S, Krebs JF, et al. . Structure of recombinant human cpp32 in complex with the tetrapeptide acetyl-asp-val-ala-asp fluoromethyl ketone. J Biol Chem 1997;272:6539–47. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace