Design, synthesis, and in vitro evaluation of aza-peptide aldehydes and ketones as novel and selective protease inhibitors
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 GM099040
NIGMS NIH HHS - United States
R21 AI126296
NIAID NIH HHS - United States
PubMed
32633155
PubMed Central
PMC7470110
DOI
10.1080/14756366.2020.1781107
Knihovny.cz E-zdroje
- Klíčová slova
- Proteasome inhibitor, anticancer, antiparasitic, aza-peptide carbonyls, caspase and legumain inhibitors,
- MeSH
- aldehydy chemie farmakologie MeSH
- aza sloučeniny chemie farmakologie MeSH
- cysteinové endopeptidasy metabolismus MeSH
- inhibitory proteas chemická syntéza chemie farmakologie MeSH
- ketony chemie farmakologie MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- peptidy chemie farmakologie MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- racionální návrh léčiv * MeSH
- skot MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldehydy MeSH
- aza sloučeniny MeSH
- cysteinové endopeptidasy MeSH
- inhibitory proteas MeSH
- ketony MeSH
- peptidy MeSH
- proteasomový endopeptidasový komplex MeSH
Aza-peptide aldehydes and ketones are a new class of reversible protease inhibitors that are specific for the proteasome and clan CD cysteine proteases. We designed and synthesised aza-Leu derivatives that were specific for the chymotrypsin-like active site of the proteasome, aza-Asp derivatives that were effective inhibitors of caspases-3 and -6, and aza-Asn derivatives that inhibited S. mansoni and I. ricinus legumains. The crystal structure of caspase-3 in complex with our caspase-specific aza-peptide methyl ketone inhibitor with an aza-Asp residue at P1 revealed a covalent linkage between the inhibitor carbonyl carbon and the active site cysteinyl sulphur. Aza-peptide aldehydes and ketones showed no cross-reactivity towards cathepsin B or chymotrypsin. The initial in vitro selectivity of these inhibitors makes them suitable candidates for further development into therapeutic agents to potentially treat multiple myeloma, neurodegenerative diseases, and parasitic infections.
Department of Chemistry and Biochemistry The Ohio State University at Newark Newark OH USA
Department of Chemistry and Biochemistry The Ohio State University Columbus OH USA
Sanford Burnham Prebys Medical Discovery Institute La Jolla CA USA
Zobrazit více v PubMed
Proulx C, Sabatino D, Hopewell R, et al. . Azapeptides and their therapeutic potential. Future Med Chem 2011;3:1139–64. PubMed
Aubin S, Martin B, Delcros JG, et al. . Retro hydrazino-azapeptoids as peptidomimetics of proteasome inhibitors. J Med Chem 2005;48:330–4. PubMed
Graybill TL, Ross MJ, Gauvin BR, et al. . Synthesis and evaluation of azapeptide-derived inhibitors of serine and cysteine proteases. Bioorg Med Chem Lett 1992;2:1375–80.
Ekici OD, Götz MG, James KE, et al. . Aza-peptide michael acceptors: a new class of inhibitors specific for caspases and other clan cd cysteine proteases. J Med Chem 2004;47:1889–92. PubMed
Asgian JL, James KE, Li ZZ, et al. . Aza-peptide epoxides: a new class of inhibitors selective for clan cd cysteine proteases. J Med Chem 2002;45:4958–60. PubMed
James KE, Asgian JL, Li ZZ, et al. . Design, synthesis, and evaluation of aza-peptide epoxides as selective and potent inhibitors of caspases-1, -3, -6, and -8. J Med Chem 2004;47:1553–74. PubMed
Götz MG, James KE, Hansell E, et al. . Aza-peptidyl michael acceptors. A new class of potent and selective inhibitors of asparaginyl endopeptidases (legumains) from evolutionarily diverse pathogens. J Med Chem 2008;51:2816–32. PubMed
Löser R, Frizler M, Schilling K, Gütschow M. Azadipeptide nitriles: highly potent and proteolytically stable inhibitors of papain-like cysteine proteases. Angew Chem Int Ed Engl 2008;47:4331–4. PubMed
Schmitz J, Beckmann AM, Dudic A, et al. . 3-Cyano-3-aza-β-amino acid derivatives as inhibitors of human cysteine cathepsins. ACS Med Chem Lett 2014;5:1076–81. PubMed PMC
Bochtler M, Ditzel L, Groll M, et al. . The proteasome. Annu Rev Biophys Biomol Struct 1999; 28:295–317. PubMed
Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994;79:13–21. PubMed
Dahlmann B. Role of proteasomes in disease. BMC Biochem 2007;8(Suppl 1): S3. PubMed PMC
Delcros JG, Floc'h MB, Prigent C, Arlot-Bonnemains Y. Proteasome inhibitors as therapeutic agents: current and future strategies. Curr Med Chem 2003;10:479–503. PubMed
Zhou HJ, Aujay MA, Bennett MK, et al. . Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (pr-047). J Med Chem 2009;52:3028–38. PubMed
Demo SD, Kirk CJ, Aujay MA, et al. . Antitumor activity of pr-171, a novel irreversible inhibitor of the proteasome. Cancer Res 2007;67:6383–91. PubMed
Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004;5:417–21. PubMed
Meregalli C. An overview of bortezomib-induced neurotoxicity. Toxics 2015;3:294–303. PubMed PMC
Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 2017;14:417–33. PubMed PMC
Park JE, Miller Z, Jun Y, et al. . Next-generation proteasome inhibitors for cancer therapy. Transl Res 2018;198:1–16. PubMed PMC
Waxman AJ, Clasen S, Hwang WT, et al. . Carfilzomib-associated cardiovascular adverse events a systematic review and meta-analysis. JAMA Oncol 2018;4:e174519. PubMed PMC
Kumar S, Moreau P, Hari P, et al. . Management of adverse events associated with ixazomib plus lenalidomide/dexamethasone in relapsed/refractory multiple myeloma. Br J Haematol 2017;178:571–82. PubMed PMC
Salvesen GS. Caspases and apoptosis. Essays Biochem 2002;38:9–19. PubMed
Salvesen GS. Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 2002;9:3–5. PubMed
Schulz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 1999;45:421–9. PubMed
Thornberry NA, Peterson EP, Zhao JJ, et al. . Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 1994;33:3934–40. PubMed
Thornberry NA, Rano TA, Peterson EP, et al. . A combinatorial approach defines specificities of members of the caspase family and granzyme b. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997;272:17907–11. PubMed
Thornberry NA. The caspase family of cysteine proteases. Br Med Bull 1997;53:478–90. PubMed
Thornberry NA. Caspases: key mediators of apoptosis. Chem Biol 1998;5:R97–103. PubMed
Graham RK, Ehrnhoefer DE, Hayden MR. Caspase-6 and neurodegeneration. Trends Neurosci 2011;34:646–56. PubMed
Ishii S. Legumain: asparaginyl endopeptidase. Meth. Enzymol 1994;244:604–15. PubMed
Abdul Alim M, Tsuji N, Miyoshi T, et al. . Characterization of asparaginyl endopeptidase, legumain induced by blood feeding in the ixodid tick haemaphysalis longicornis. Insect Biochem Mol Biol 2007;37:911–22. PubMed
Liu C, Sun C, Huang H, et al. . Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res 2003;63:2957–64. PubMed
Chen JM, Dando PM, Rawlings ND, et al. . Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem 1997;272:8090–8. PubMed
Hara-Nishimura I, Inoue K, Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 1991;294:89–93. PubMed
Davis AH, Nanduri J, Watson DC. Cloning and gene expression of schistosoma mansoni protease. J Biol Chem 1987;262:12851–5. PubMed
Sojka D, Hajdusek O, Dvorak J, et al. . Irae: an asparaginyl endopeptidase (legumain) in the gut of the hard tick ixodes ricinus. Int J Parasitol 2007;37:713–24. PubMed PMC
Delcroix M, Sajid M, Caffrey CR, et al. . A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 2006;281:39316–29. PubMed
Sajid M, McKerrow JH, Hansell E, et al. . Functional expression and characterization of schistosoma mansoni cathepsin b and its trans-activation by an endogenous asparaginyl endopeptidase. Mol Biochem Parasitol 2003;131:65–75. PubMed
Kilpatrick AM, Dobson ADM, Levi T, et al. . Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos Trans R Soc Lond B Biol Sci 1722;2017:372. PubMed PMC
Steinmann P, Keiser J, Bos R, et al. . Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 2006;6:411–25. PubMed
Kaiser M, Milbradt AG, Siciliano C, et al. . Tmc-95a analogues with endocyclic biphenyl ether group as proteasome inhibitors. Chem Biodivers 2004;1:161–73. PubMed
Caffrey CR, Mathieu MA, Gaffney AM, et al. . Identification of a cdna encoding an active asparaginyl endopeptidase of schistosoma mansoni and its expression in pichia pastoris. FEBS Lett 2000;466:244–8. PubMed
Fang B, Boross PI, Tozser J, Weber IT. Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition. J Mol Biol 2006;360:654–66. PubMed
Stennicke HR, Salvesen GS. Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 1997;272:25719–23. PubMed
Liebschner D, Afonine PV, Baker ML, Bunkoczi G, et al. . Macromolecular structure determination using x-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr D Struct Biol 2019;75:861–77. PubMed PMC
Moriarty NW, Grosse-Kunstleve RW, Adams PD. Electronic ligand builder and optimization workbench (elbow): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr 2009;65:1074–80. PubMed PMC
Moriarty NW, Draizen EJ, Adams PD. An editor for the generation and customization of geometry restraints. Acta Crystallogr D Struct Biol 2017;73:123–30. PubMed PMC
Afonine PV, Grosse-Kunstleve RW, Echols N, et al. . Towards automated crystallographic structure refinement with phenix.Refine. Acta Crystallogr D Biol Crystallogr 2012;68:352–67. PubMed PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Crystallogr D Biol Crystallogr 2010;66:486–501. PubMed PMC
Mathieu MA, Bogyo M, Caffrey CR, et al. . Substrate specificity of schistosome versus human legumain determined by p1-p3 peptide libraries. Mol Biochem Parasitol 2002;121:99–105. PubMed
Bogyo M, Shin S, McMaster JS, Ploegh HL. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem Biol 1998;5:307–20. PubMed
Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001;8:739–58. PubMed
Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998;8:397–403. PubMed
Rock KL, Gramm C, Rothstein L, et al. . Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on mhc class i molecules. Cell 1994;78:761–71. PubMed
Rotonda J, Nicholson DW, Fazil KM, et al. . The three-dimensional structure of apopain/cpp32, a key mediator of apoptosis. Nat Struct Biol 1996;3:619–25. PubMed
Mittl PR, Di Marco S, Krebs JF, et al. . Structure of recombinant human cpp32 in complex with the tetrapeptide acetyl-asp-val-ala-asp fluoromethyl ketone. J Biol Chem 1997;272:6539–47. PubMed