Gene fusion characterisation of rare aggressive prostate cancer variants-adenosquamous carcinoma, pleomorphic giant-cell carcinoma, and sarcomatoid carcinoma: an analysis of 19 cases
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Henry Ford Health System
PubMed
32639612
DOI
10.1111/his.14205
Knihovny.cz E-zdroje
- Klíčová slova
- BRAF, ERG, FAM131A, GRHL2, SND1, adenosquamous carcinoma, pleomorphic giant-cell carcinoma, prostate cancer, sarcomatoid carcinoma,
- MeSH
- adenoskvamózní karcinom genetika patologie MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- fúze genů * MeSH
- fúzní onkogenní proteiny genetika MeSH
- genová přestavba MeSH
- hybridizace in situ fluorescenční MeSH
- imunohistochemie MeSH
- karcinom z renálních buněk genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metastázy nádorů genetika patologie MeSH
- nádory prostaty genetika patologie MeSH
- obrovskobuněčný karcinom genetika patologie MeSH
- protoonkogenní proteiny B-Raf genetika metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- serinové endopeptidasy genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- transkripční regulátor ERG genetika metabolismus MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- fúzní onkogenní proteiny MeSH
- GRHL2 protein, human MeSH Prohlížeč
- protoonkogenní proteiny B-Raf MeSH
- serinové endopeptidasy MeSH
- TMPRSS2 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
- transkripční regulátor ERG MeSH
AIMS: To evaluate the molecular underpinnings of the rare aggressive prostate cancer variants adenosquamous carcinoma, pleomorphic giant-cell carcinoma, and sarcomatoid carcinoma. METHODS AND RESULTS: We retrieved 19 tumours with one or more variant(s), and performed ERG immunohistochemistry, a next-generation sequencing assay targeting recurrent gene fusions, and fluorescence in-situ hybridisation (FISH) for ERG and BRAF. Divergent differentiation included: sarcomatoid carcinoma (n = 10), adenosquamous carcinoma (n = 7), and pleomorphic giant-cell carcinoma (n = 7). Five patients had more than one variant. Four had variants only in metastases. ERG rearrangement was detected in nine (47%, seven via sequencing, showing TMPRSS2-ERG fusions and one GRHL2-ERG fusion, and two via FISH, showing rearrangement via deletion). ERG was immunohistochemically positive in the adenocarcinoma in eight of nine (89%) patients, but was immunohistochemically positive in the variant in only five of nine patients (56%, typically decreased). One patient had a false-positive ERG immunohistochemical result in the sarcomatoid component despite a negative FISH result. Two (11%) harboured BRAF fusions (FAM131A-BRAF and SND1-BRAF). CONCLUSIONS: ERG fusions are present in these rare prostate cancer variants with a frequency close to that in conventional prostate cancer (9/19, 47%). ERG immunohistochemistry usually detects rearrangement in the adenocarcinoma, but is less sensitive for the variant histology, with weak to negative staining. Adenosquamous and sarcomatoid variants can, particularly, occur together. Molecular assessment may be an additional tool in selected cases to confirm the prostatic origin of unusual tumours. The presence of two BRAF rearrangements suggests that this gene fusion may be enriched in this setting, as RAF kinase fusions have been previously reported in 1-2% of prostate cancers.
Department of Pathology and Immunology Baylor College of Medicine Houston TX USA
Department of Pathology Charles University Faculty of Medicine Plzen Czech Republic
Department of Pathology Indiana University School of Medicine Indianapolis IN USA
Department of Pathology Memorial University St John's Newfoundland Canada
Department of Pathology USF Health Ruffolo Hooper and Associates Tampa FL USA
Department of Pathology Virginia Commonwealth University Richmond VA USA
Department of Pathology Wayne State University School of Medicine Detroit MI USA
Department of Urology Vattikutti Urology Institute Henry Ford Health System Detroit MI USA
Zobrazit více v PubMed
Mazzucchelli R, Lopez-Beltran A, Cheng L et al. Rare and unusual histological variants of prostatic carcinoma: clinical significance. BJU Int. 2008; 102; 1369-1374.
Grignon DJ. Unusual subtypes of prostate cancer. Mod. Pathol. 2004; 17; 316-327.
Epstein JI, Algaba F et al. Squamous neoplasms. In Moch H, Humphrey PA, Ulbright TM eds. World Health Organization classification of tumours of the urinary system and male genital organs. LyonIARC Press, 2016; 170.
Rodrigues DN, Hazell S, Miranda S et al. Sarcomatoid carcinoma of the prostate: ERG fluorescence in-situ hybridization confirms epithelial origin. Histopathology 2015; 66; 898-901.
Dizman N, Salgia M, Ali SM et al. Squamous transformation of prostate adenocarcinoma: a report of two cases with genomic profiling. Clin. Genitourin. Cancer 2020; 18: e289-e292.
Ray ME, Wojno KJ, Goldstein NS et al. Clonality of sarcomatous and carcinomatous elements in sarcomatoid carcinoma of the prostate. Urology 2006; 67(423): 423.e5-423.e8.
Lotan TL, Kaur HB, Alharbi AM et al. DNA damage repair alterations are frequent in prostatic adenocarcinomas with focal pleomorphic giant cell features. Histopathology 2019; 74; 836-843.
Bhalla R, Kunju LP, Tomlins SA et al. Novel dual-color immunohistochemical methods for detecting ERG-PTEN and ERG-SPINK1 status in prostate carcinoma. Mod. Pathol. 2013; 26; 835-848.
Palanisamy N, Ateeq B, Kalyana-Sundaram S et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat. Med. 2010; 16; 793-798.
Jebastin JAS, Smith SC, Perry KD et al. Pseudosarcomatous myofibroblastic proliferations of the genitourinary tract are genetically different from nodular fasciitis and lack USP6, ROS1 and ETV6 gene rearrangements. Histopathology 2018; 73; 321-326.
Kim P, FusionGDB ZX.Fusion Gene annotation DataBase. Available at: https://ccsm.uth.edu/FusionGDB/gene_search_result.cgi?page=page&type=quick_search&quick_search=15390 (accessed 30 December 2019).
Alharbi AM, De Marzo AM, Hicks JL et al. Prostatic adenocarcinoma with focal pleomorphic giant cell features: a series of 30 cases. Am. J. Surg. Pathol. 2018; 42; 1286-1296.
Parwani AV, Herawi M, Epstein JI. Pleomorphic giant cell adenocarcinoma of the prostate: report of 6 cases. Am. J. Surg. Pathol. 2006; 30; 1254-1259.
Parwani AV, Kronz JD, Genega EM et al. Prostate carcinoma with squamous differentiation: an analysis of 33 cases. Am. J. Surg. Pathol. 2004; 28; 651-657.
Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med. 2015; 7; 129.
Yaskiv O, Rubin BP, He H et al. ERG protein expression in human tumors detected with a rabbit monoclonal antibody. Am. J. Clin. Pathol. 2012; 138; 803-810.
Abida W, Cyrta J, Heller G et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl Acad. Sci. USA 2019; 116; 11428-11436.
Baca SC, Prandi D, Lawrence MS et al. Punctuated evolution of prostate cancer genomes. Cell 2013; 153; 666-677.
Robinson D, Van Allen EM, Wu YM et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161; 1215-1228.
Abida W, Armenia J, Gopalan A et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis. Oncol. 2017; 2017; 1-16.
Gao Q, Liang WW, Foltz SM et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018; 23; 227-238.
Chmielecki J, Hutchinson KE, Frampton GM et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov. 2014; 4; 1398-1405.
Jang JS, Lee A, Li J et al. Common oncogene mutations and novel SND1-BRAF transcript fusion in lung adenocarcinoma from never smokers. Sci Rep. 2015; 5; 9755.
Ross JS, Wang K, Chmielecki J et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 2016; 138; 881-890.
Wood LD, Klimstra DS. Pathology and genetics of pancreatic neoplasms with acinar differentiation. Semin. Diagn. Pathol. 2014; 31; 491-497.
Chou A, Kim Y, Samra JS et al. BRAF gene rearrangements can be identified by FISH studies in pancreatic acinar cell carcinoma. Pathology 2018; 50; 345-348.
Roth JJ, Santi M, Pollock AN et al. Chromosome band 7q34 deletions resulting in KIAA 1549-BRAF and FAM 131 B-BRAF fusions in pediatric low-grade gliomas. Brain Pathol. 2015; 25; 182-192.
Cin H, Meyer C, Herr R et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 2011; 121; 763-774.
Paltoglou S, Das R, Townley SL et al. Novel androgen receptor coregulator GRHL2 exerts both oncogenic and antimetastatic functions in prostate cancer. Cancer Res. 2017; 77; 3417-3430.