Glycosylated-imidazole aldoximes as reactivators of pesticides inhibited AChE: Synthesis and in-vitro reactivation study

. 2020 Nov ; 80 () : 103454. [epub] 20200706

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32645360
Odkazy

PubMed 32645360
DOI 10.1016/j.etap.2020.103454
PII: S1382-6689(20)30130-7
Knihovny.cz E-zdroje

The present armamentarium of commercially available antidotes provides limited protection against the neurological effects of organophosphate exposure. Hence, there is an urgent need to design and develop molecules that can protect and reactivate inhibited-AChE in the central nervous system. Some natural compounds like glucose and certain amino acids (glutamate, the anion of glutamic acid) can easily cross the blood brain barrier although they are highly polar. Glucose is mainly transported by systems like glucose transporter protein type 1 (GLUT1). For this reason, a series of non-quaternary and quaternary glycosylated imidazolium oximes with different alkane linkers have been designed and synthesized. These compounds were evaluated for their in-vitro reactivation ability against pesticide (paraoxon-ethyl and paraoxon-methyl) inhibited-AChE and compared with standards antidote AChE reactivators pralidoxime and obidoxime. Several physicochemical properties including acid dissociation constant (pKa), logP, logD, HBD and HBA, have also been assessed for reported compounds. Out of the synthesized compounds, three have exhibited comparable potency with a standard antidote (pralidoxime).

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...