Memetic Cuckoo-Search-Based Optimization in Machining Galvanized Iron
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32650437
PubMed Central
PMC7411800
DOI
10.3390/ma13143047
PII: ma13143047
Knihovny.cz E-zdroje
- Klíčová slova
- cuckoo search, material removal rate (MRR), optimization, regression analysis,
- Publikační typ
- časopisecké články MeSH
In this article, an improved variant of the cuckoo search (CS) algorithm named Coevolutionary Host-Parasite (CHP) is used for maximizing the metal removal rate in a turning process. The spindle speed, feed rate and depth of cut are considered as the independent parameters that describe the metal removal rate during the turning operation. A data-driven second-order polynomial regression approach is used for this purpose. The training dataset is designed using an L16 orthogonal array. The CHP algorithm is effective in quickly locating the global optima. Furthermore, CHP is seen to be sufficiently robust in the sense that it is able to identify the optima on independent reruns. The CHP predicted optimal solution presents ±10% deviations in the optimal process parameters, which shows the robustness of the optimal solution.
Zobrazit více v PubMed
Das P.P., Gupta P., Ghadai R.K., Ramachandran M., Kalita K. Optimization of turning process parameters by taguchi-based six sigma. Mech. Mech. Eng. 2017;21:649–656.
Santhanakrishnan M., Sivasakthivel P.S., Sudhakaran R. Modeling of geometrical and machining parameters on temperature rise while machining Al 6351 using response surface methodology and genetic algorithm. J. Braz. Soc. Mech. Sci. Eng. 2017;39:487–496. doi: 10.1007/s40430-015-0378-5. DOI
Suresh P., Venkatesan R., Sekar T., Elango N., Sathiyamoorthy V. Optimization of intervening variables in Micro EDM of Ss 316L using a genetic algorithm and response-surface methodology. Stroj. Vestn. J. Mech. Eng. 2014;60:656–664. doi: 10.5545/sv-jme.2014.1665. DOI
Prabhu S., Vinayagam B.K. Optimization of carbon nanotube-based electrical discharge machining parameters using full factorial design and genetic algorithm. Aust. J. Mech. Eng. 2016;14:161–173. doi: 10.1080/14484846.2015.1093221. DOI
Ghadai R.K., Kalita K., Gao X.Z. Symbolic regression metamodel based multi-response optimization of EDM process. Fme Trans. 2020;48:405. doi: 10.5937/fme2002404G. DOI
Behera R.R., Ghadai R.K., Kalita K., Banerjee S. Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN. Int. J. Plast. Technol. 2016;20:424–450. doi: 10.1007/s12588-016-9163-2. DOI
Cus F., Balic J., Zuperl U. Hybrid ANFIS-ants system based optimization of turning parameters. J. Achiev. Mater. Manuf. Eng. 2009;36:79–86.
Ning J., Liang S.Y. Inverse identification of Johnson-Cook material constants based on modified chip formation model and iterative gradient search using temperature and force measurements. Int. J. Adv. Manuf. Technol. 2019;102:2865–2876. doi: 10.1007/s00170-019-03286-0. DOI
Ning J., Nguyen V., Huang Y., Hartwig K.T., Liang S.Y. Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int. J. Adv. Manuf. Technol. 2018;99:1131–1140. doi: 10.1007/s00170-018-2508-6. DOI
Zuo K.T., Chen L.P., Zhang Y.Q., Yang J. Manufacturing-and machining-based topology optimization. Int. J. Adv. Manuf. Technol. 2006;27:531–536. doi: 10.1007/s00170-004-2210-8. DOI
Kilickap E., Huseyinoglu M. Selection of optimum drilling parameters on Burr Height using response surface methodology and genetic algorithm in drilling of AISI 304 stainless steel. Mater. Manuf. Process. 2010;25:1068–1076. doi: 10.1080/10426911003720854. DOI
Kilickap E., Huseyinoglu M., Yardimeden A. Optimization of drilling parameters on surface roughness in drilling of Aisi 1045 using response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 2011;52:79–88. doi: 10.1007/s00170-010-2710-7. DOI
Kalita K., Shivakoti I., Ghadai R.K. Optimizing process parameters for Laser Beam Micro-Marking using genetic algorithm and particle swarm optimization. Mater. Manuf. Process. 2017;32:1101–1108. doi: 10.1080/10426914.2017.1303156. DOI
Kalita K., Mallick P.K., Bhoi A.K., Ghadai R. Optimizing drilling induced delamination in GFRP composites using genetic algorithm & particle swarm optimisation. Adv. Compos. Lett. 2018;27:1–9.
Saidi R., Fathallah B.B., Mabrouki T., Belhadi S., Yallese M.A. Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function. Int. J. Adv. Manuf. Technol. 2019;100:2945–2968. doi: 10.1007/s00170-018-2816-x. DOI
Mia M., Królczyk G., Maruda R., Wojciechowski S. Intelligent optimization of hard-turning parameters using evolutionary algorithms for smart manufacturing. Materials. 2019;12:879. doi: 10.3390/ma12060879. PubMed DOI PMC
Warsi S.S., Agha M.H., Ahmad R., Jaffery S.H.I., Khan M. Sustainable turning using multi-objective optimization: A study of Al 6061 T6 at high cutting speeds. Int. J. Adv. Manuf. Technol. 2019;100:843–855. doi: 10.1007/s00170-018-2759-2. DOI
Mia M., Dhar N.R. Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition. Neural Comput. Appl. 2019;31:2349–2370. doi: 10.1007/s00521-017-3192-4. DOI
Laouissi A., Yallese M.A., Belbah A., Belhadi S., Haddad A. Investigation, modeling, and optimization of cutting parameters in turning of gray cast iron using coated and uncoated silicon nitride ceramic tools. Based on ANN, RSM, and GA optimization. Int. J. Adv. Manuf. Technol. 2019;101:523–548. doi: 10.1007/s00170-018-2931-8. DOI
Kalita K., Nasre P., Dey P., Haldar S. Metamodel based multi-objective design optimization of laminated composite plates. Struct. Eng. Mech. 2018;67:301–310.
Ragavendran U., Ghadai R.K., Bhoi A., Ramachandran M., Kalita K. Sensitivity analysis and optimization of EDM process parameters. Trans. Can. Soc. Mech. Eng. 2018;43:13–25. doi: 10.1139/tcsme-2018-0021. DOI
Yang X.-S., Deb S. Cuckoo search via Levy flights; Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC); Coimbatore, India. 9–11 December 2009; Piscataway, NJ, USA: IEEE; 2009. pp. 210–214. DOI
Mishra S.K. Global optimization of some difficult benchmark functions by host-parasite coevolutionary algorithm. Econ. Bull. 2013;33:1–18.
Kalita K., Dey P., Haldar S., Gao X.Z. Optimizing frequencies of skew composite laminates with metaheuristic algorithms. Eng. Comput. 2020;36:741–761. doi: 10.1007/s00366-019-00728-x. DOI
Bártol I., Karcza Z., Moskát C., Røskaft E., Kisbenedek T. Responses of great reed warblers Acrocephalus arundinaceus to experimental brood parasitism: The effects of a cuckoo Cuculus canorus dummy and egg mimicry. J. Avian Biol. 2002;33:420–425. doi: 10.1034/j.1600-048X.2002.02945.x. DOI
Kalita K., Dey P., Haldar S. Search for accurate RSM metamodels for structural engineering. J. Reinf. Plast. Compos. 2019;38:995–1013. doi: 10.1177/0731684419862346. DOI
Ghadai R.K., Kalita K., Mondal S.C., Swain B.P. PECVD process parameter optimization: Towards increased hardness of diamond-like carbon thin films. Mater. Manuf. Process. 2018;33:1905–1913. doi: 10.1080/10426914.2018.1512114. DOI
Tibadia R., Patwardhan K., Shah D., Shinde D., Chaudhari R., Kalita K. Experimental investigation on hole quality in drilling of composite pipes. Trans. Can. Soc. Mech. Eng. 2018;42:147–155. doi: 10.1139/tcsme-2017-0045. DOI