In vivo Reporters for Visualizing Alternative Splicing of Hormonal Genes

. 2020 Jul 08 ; 9 (7) : . [epub] 20200708

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32650629

Grantová podpora
16-26428S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education, Youth and Science
LTC18073 Ministry of Education, Youth and Science
LM2018129 - Czech BioImaging Ministry of Education, Youth and Science
CZ.02.1.01/0.0/0.0/16_013/0001775 European Regional Development Fund
OPPK CZ.2.16/3.1.00/21519 Ministry of Education, Youth and Science

Rapid progress in plant molecular biology in recent years has uncovered the main players in hormonal pathways and characterized transcriptomic networks associated with hormonal response. However, the role of RNA processing, in particular alternative splicing (AS), remains largely unexplored. Here, using example genes involved in cytokinin signaling, brassinosteroid synthesis and auxin transport, we present a set of reporters devised to visualize their AS events in vivo. These reporters show a differential tissue-specific expression of certain transcripts and reveal that expression of some of the them can be changed by the application of the exogenous hormone. Finally, based on the characterized AS event of the PIN7 auxin efflux carrier, we designed a system that allows a rapid genetic screening for the factors upstream of this AS event. Our innovative toolset can be therefore highly useful for exploring novel regulatory nodes of hormonal pathways and potentially helpful for plant researchers focusing on developmental aspects of AS.

Zobrazit více v PubMed

Kuroyanagi H., Kobayashi T., Mitani S., Hagiwara M. Transgenic alternative-splicing reporters reveal tissue-specific expression profiles and regulation mechanisms in vivo. Nat. Methods. 2006;3:909–915. doi: 10.1038/nmeth944. PubMed DOI

Norris A.D., Gao S., Norris M.L., Ray D., Ramani A.K., Fraser A.G., Morris Q., Hughes T.R., Zhen M., Calarco J.A. A pair of RNA-binding proteins controls networks of splicing events contributing to specialization of neural cell types. Mol. Cell. 2014;54:946–959. doi: 10.1016/j.molcel.2014.05.004. PubMed DOI PMC

Zheng S., Damoiseaux R., Chen L., Black D.L. A broadly applicable high-throughput screening strategy identifies new regulators of Dlg4 (Psd-95) alternative splicing. Genome Res. 2013;23:998–1007. doi: 10.1101/gr.147546.112. PubMed DOI PMC

Bonano V.I., Oltean S., Garcia-Blanco M.A. A protocol for imaging alternative splicing regulation in vivo using fluorescence reporters in transgenic mice. Nat. Protoc. 2007;2:2166–2181. doi: 10.1038/nprot.2007.292. PubMed DOI

Stoilov P., Lin C.-H., Damoiseaux R., Nikolic J., Black D.L. A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators. PNAS. 2008;105:11218–11223. doi: 10.1073/pnas.0801661105. PubMed DOI PMC

Moore M.J., Wang Q., Kennedy C.J., Silver P.A. An Alternative Splicing Network Links Cell-Cycle Control to Apoptosis. Cell. 2010;142:625–636. doi: 10.1016/j.cell.2010.07.019. PubMed DOI PMC

Li J.S.S., Millard S.S. Deterministic splicing of Dscam2 is regulated by Muscleblind. Sci. Adv. 2019;5:eaav1678. doi: 10.1126/sciadv.aav1678. PubMed DOI PMC

Göhring J., Jacak J., Barta A. Imaging of Endogenous Messenger RNA Splice Variants in Living Cells Reveals Nuclear Retention of Transcripts Inaccessible to Nonsense-Mediated Decay in Arabidopsis. Plant Cell. 2014;26:754–764. doi: 10.1105/tpc.113.118075. PubMed DOI PMC

Ushijima T., Hanada K., Gotoh E., Yamori W., Kodama Y., Tanaka H., Kusano M., Fukushima A., Tokizawa M., Yamamoto Y.Y., et al. Light Controls Protein Localization through Phytochrome-Mediated Alternative Promoter Selection. Cell. 2017;171:1316–1325.e12. doi: 10.1016/j.cell.2017.10.018. PubMed DOI

Kashkan I., Hrtyan M., Filepova R., Vondrakova Z., Hejatko J., Simon S., Rombaut D., Jacobs T.B., Frilander M.J., Friml J., et al. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. bioRxiv. 2020 doi: 10.1101/2020.05.02.074070. PubMed DOI

Wang Z., Ji H., Yuan B., Wang S., Su C., Yao B., Zhao H., Li X. ABA signalling is fine-tuned by antagonistic HAB1 variants. Nat. Commun. 2015;6:8138. doi: 10.1038/ncomms9138. PubMed DOI

Zhan X., Qian B., Cao F., Wu W., Yang L., Guan Q., Gu X., Wang P., Okusolubo T.A., Dunn S.L., et al. An Arabidopsis PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses. Nat. Commun. 2015;6:8139. doi: 10.1038/ncomms9139. PubMed DOI PMC

Szakonyi D., Duque P. Alternative Splicing as a Regulator of Early Plant Development. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.01174. PubMed DOI PMC

Carvalho R.F., Carvalho S.D., Duque P. The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol. 2010;154:772–783. doi: 10.1104/pp.110.155523. PubMed DOI PMC

Sugliani M., Brambilla V., Clerkx E.J.M., Koornneef M., Soppe W.J.J. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell. 2010;22:1936–1946. doi: 10.1105/tpc.110.074674. PubMed DOI PMC

Hrtyan M., Šliková E., Hejátko J., Růžička K. RNA processing in auxin and cytokinin pathways. J. Exp. Bot. 2015;66:4897–4912. doi: 10.1093/jxb/erv189. PubMed DOI

Fujikura U., Jing R., Hanada A., Takebayashi Y., Sakakibara H., Yamaguchi S., Kappel C., Lenhard M. Variation in Splicing Efficiency Underlies Morphological Evolution in Capsella. Dev. Cell. 2018;44:192–203. doi: 10.1016/j.devcel.2017.11.022. PubMed DOI

Kriechbaumer V., Wang P., Hawes C., Abell B.M. Alternative splicing of the auxin biosynthesis gene YUCCA4 determines its subcellular compartmentation. Plant J. 2012;70:292–302. doi: 10.1111/j.1365-313X.2011.04866.x. PubMed DOI

Ghelli R., Brunetti P., Napoli N., Paolis A.D., Cecchetti V., Tsuge T., Serino G., Matsui M., Mele G., Rinaldi G., et al. A Newly Identified Flower-Specific Splice Variant of AUXIN RESPONSE FACTOR8 Regulates Stamen Elongation and Endothecium Lignification in Arabidopsis. Plant Cell. 2018;30:620–637. doi: 10.1105/tpc.17.00840. PubMed DOI PMC

Remy E., Cabrito T.R., Baster P., Batista R.A., Teixeira M.C., Friml J., Sá-Correia I., Duque P. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell. 2013;25:901–926. doi: 10.1105/tpc.113.110353. PubMed DOI PMC

Mähönen A.P., Bishopp A., Higuchi M., Nieminen K.M., Kinoshita K., Törmäkangas K., Ikeda Y., Oka A., Kakimoto T., Helariutta Y. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science. 2006;311:94–98. doi: 10.1126/science.1118875. PubMed DOI

Choe S., Dilkes B.P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K.A. The DWF4 Gene of Arabidopsis Encodes a Cytochrome P450 That Mediates Multiple 22α-Hydroxylation Steps in Brassinosteroid Biosynthesis. Plant Cell. 1998;10:231–243. doi: 10.1105/tpc.10.2.231. PubMed DOI PMC

Berardini T.Z., Reiser L., Li D., Mezheritsky Y., Muller R., Strait E., Huala E. The arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome. Genesis. 2015;53:474–485. doi: 10.1002/dvg.22877. PubMed DOI PMC

Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI

Friml J., Benková E., Blilou I., Wisniewska J., Hamann T., Ljung K., Woody S., Sandberg G., Scheres B., Jürgens G., et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell. 2002;108:661–673. doi: 10.1016/S0092-8674(02)00656-6. PubMed DOI

Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI

Skerker J.M., Perchuk B.S., Siryaporn A., Lubin E.A., Ashenberg O., Goulian M., Laub M.T. Rewiring the specificity of two-component signal transduction systems. Cell. 2008;133:1043–1054. doi: 10.1016/j.cell.2008.04.040. PubMed DOI PMC

Mähönen A.P., Higuchi M., Törmäkangas K., Miyawaki K., Pischke M.S., Sussman M.R., Helariutta Y., Kakimoto T. Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr. Biol. 2006;16:1116–1122. doi: 10.1016/j.cub.2006.04.030. PubMed DOI

Besnard F., Refahi Y., Morin V., Marteaux B., Brunoud G., Chambrier P., Rozier F., Mirabet V., Legrand J., Lainé S., et al. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature. 2014;505:417–421. doi: 10.1038/nature12791. PubMed DOI

Doerner P., Jørgensen J.-E., You R., Steppuhn J., Lamb C. Control of root growth and development by cyclin expression. Nature. 1996;380:520–523. doi: 10.1038/380520a0. PubMed DOI

Bancoş S., Nomura T., Sato T., Molnár G., Bishop G.J., Koncz C., Yokota T., Nagy F., Szekeres M. Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis. Plant Physiol. 2002;130:504–513. doi: 10.1104/pp.005439. PubMed DOI PMC

Vieten A., Vanneste S., Wisniewska J., Benková E., Benjamins R., Beeckman T., Luschnig C., Friml J. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development. 2005;132:4521–4531. doi: 10.1242/dev.02027. PubMed DOI

Curtis M.D., Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 2003;133:462–469. doi: 10.1104/pp.103.027979. PubMed DOI PMC

Kempe K., Gils M. Pollination control technologies for hybrid breeding. Mol. Breed. 2011;27:417–437. doi: 10.1007/s11032-011-9555-0. DOI

Debeaujon I., Nesi N., Perez P., Devic M., Grandjean O., Caboche M., Lepiniec L. Proanthocyanidin-accumulating cells in Arabidopsis testa: Regulation of differentiation and role in seed development. Plant Cell. 2003;15:2514–2531. doi: 10.1105/tpc.014043. PubMed DOI PMC

Dotson S.B., Lanahan M.B., Smith A.G., Kishore G.M. A phosphonate monoester hydrolase from Burkholderia caryophilli PG2982 is useful as a conditional lethal gene in plants. Plant J. 1996;10:383–392. doi: 10.1046/j.1365-313X.1996.10020383.x. PubMed DOI

Erikson O., Hertzberg M., Näsholm T. A conditional marker gene allowing both positive and negative selection in plants. Nat. Biotechnol. 2004;22:455–458. doi: 10.1038/nbt946. PubMed DOI

Pollegioni L., Molla G. New biotech applications from evolved D-amino acid oxidases. Trends Biotechnol. 2011;29:276–283. doi: 10.1016/j.tibtech.2011.01.010. PubMed DOI

Li S., Yamada M., Han X., Ohler U., Benfey P.N. High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation. Dev. Cell. 2016;39:508–522. doi: 10.1016/j.devcel.2016.10.012. PubMed DOI PMC

Zhang R., Calixto C.P.G., Marquez Y., Venhuizen P., Tzioutziou N.A., Guo W., Spensley M., Entizne J.C., Lewandowska D., ten Have S., et al. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res. 2017 doi: 10.1093/nar/gkx267. PubMed DOI PMC

Kuroyanagi H., Ohno G., Mitani S., Hagiwara M. The Fox-1 family and SUP-12 coordinately regulate tissue-specific alternative splicing in vivo. Mol. Cell. Biol. 2007;27:8612–8621. doi: 10.1128/MCB.01508-07. PubMed DOI PMC

Takeuchi A., Hosokawa M., Nojima T., Hagiwara M. Splicing Reporter Mice Revealed the Evolutionally Conserved Switching Mechanism of Tissue-Specific Alternative Exon Selection. PLoS ONE. 2010;5:e10946. doi: 10.1371/journal.pone.0010946. PubMed DOI PMC

Kanno T., Lin W.-D., Fu J.L., Chang C.-L., Matzke A.J.M., Matzke M. A Genetic Screen for Pre-mRNA Splicing Mutants of Arabidopsis thaliana Identifies Putative U1 snRNP Components RBM25 and PRP39a. Genetics. 2017 doi: 10.1534/genetics.117.300149. PubMed DOI PMC

Kanno T., Venhuizen P., Wen T.-N., Lin W.-D., Chiou P., Kalyna M., Matzke A.J.M., Matzke M. PRP4KA, a Putative Spliceosomal Protein Kinase, Is Important for Alternative Splicing and Development in Arabidopsis thaliana. Genetics. 2018;210:1267–1285. doi: 10.1534/genetics.118.301515. PubMed DOI PMC

Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Siligato R., Wang X., Yadav S.R., Lehesranta S., Ma G., Ursache R., Sevilem I., Zhang J., Gorte M., Prasad K., et al. MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants. Plant Physiol. 2016;170:627–641. doi: 10.1104/pp.15.01246. PubMed DOI PMC

Karimi M., Bleys A., Vanderhaeghen R., Hilson P. Building Blocks for Plant Gene Assembly. Plant Physiol. 2007;145:1183–1191. doi: 10.1104/pp.107.110411. PubMed DOI PMC

Gibson D.G., Young L., Chuang R.-Y., Venter J.C., Hutchison C.A., Smith H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 2009;6:343–345. doi: 10.1038/nmeth.1318. PubMed DOI

Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. doi: 10.1038/nature03184. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

How alternative splicing changes the properties of plant proteins

. 2022 ; 3 () : e14. [epub] 20220701

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...