Imipridone enhances vascular relaxation via FOXO1 pathway
Jazyk angličtina Země Austrálie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32652671
DOI
10.1111/1440-1681.13377
Knihovny.cz E-zdroje
- Klíčová slova
- FOXO1 pathway, acetylcholine, cardiovascular diseases, imipridone (TIC10), nitric oxide, vascular relaxation,
- MeSH
- aorta abdominalis účinky léků metabolismus MeSH
- chinolony MeSH
- forkhead box protein O1 * metabolismus MeSH
- imidazoly farmakologie MeSH
- králíci MeSH
- pyrimidiny farmakologie MeSH
- signální transdukce * účinky léků MeSH
- vazodilatace * účinky léků MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5-amino-7-(cyclohexylamino)-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid MeSH Prohlížeč
- chinolony MeSH
- forkhead box protein O1 * MeSH
- imidazoly MeSH
- pyrimidiny MeSH
Cardiovascular complications are a side effect of cancer therapy, potentially through reduced blood vessel function. ONC201 (TIC10) is currently used in phase 2 clinical trials to treat high-grade gliomas. TIC10 is a phosphatidylinositol 3-kinase (PI3K)/AKT/extracellular signal-regulated kinase (ERK) inhibitor that induces apoptosis via upregulation of TNF-related apoptosis-inducing ligand, which via stimulation of FOXO and death receptor could increase eNOS upregulation. This has the potential to improve vascular function through increased NO bioavailability. Our aim was to investigate the role of TIC10 on vascular function to determine if it would affect the risk of CVD. Excised abdominal aorta from White New Zealand male rabbits were cut into rings. Vessels were incubated with TIC10 and AS1842856 (FOXO1 inhibitor) followed by cumulative doses of acetylcholine (Ach) to assess vessel function. Vessels were then processed for immunohistochemistry. Incubation of blood vessels with TIC10 resulted in enhanced vasodilatory capacity. Combination treatment with the FOXO1 inhibitor and TIC10 resulted in reduced vascular function compared to control. Immunohistochemical analysis indicated a 3-fold increase in death receptor 5 (DR5) expression in the TIC10-treated blood vessels but the addition of the FOXO1 inhibitor downregulated DR5 expression. The expression of DR4 receptor was not significantly increased in the presence of TIC10; however, addition of the FOXO1 inhibitor downregulated expression. TIC10 has the capacity to improve the function of healthy vessels when stimulated with the vasodilator Ach. This highlights its therapeutic potential not only in cancer treatment without cardiovascular side effects, but also as a possible drug to treat established CVD.
1st Department of Internal Medicine Faculty of Medicine and University Hospital Bratislava Slovakia
Institute for Health and Sport Victoria University Melbourne Victoria Australia
Zobrazit více v PubMed
Gutierrez J, Alloubani A, Mari M, Alzaatreh M. Cardiovascular disease risk factors: hypertension, diabetes mellitus and obesity among Tabuk Citizens in Saudi Arabia. Open Cardiovasc Med J. 2018;12:41-49.
Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11:117.
Lnsis A. Atherosclenrosis. Nature. 2000;407:233-241.
Hermann M, Flammer A, Lüscher TF. Nitric oxide in hypertension. J Clin Hypertens (Greenwich). 2006;8(12 Suppl 4):17-29.
Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93(1):105-113.
Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspects Med. 2005;26(1-2):33-65.
Premer C, Kanelidis AJ, Hare JM, Schulman IH. Rethinking endothelial dysfunction as a crucial target in fighting heart failure. Mayo Clin Proc Innov Qual Outcomes. 2019;3(1):1-13.
Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci. 2015;129(2):83-94.
Allen JE, Krigsfeld G, Mayes PA et al Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med. 2013;5(171):171ra17.
Allen JE, Krigsfeld G, Patel L et al Identification of TRAIL-inducing compounds highlights small molecule ONC201/TIC10 as a unique anti-cancer agent that activates the TRAIL pathway. Mol Cancer. 2015;14:99.
Greer YE, Lipkowitz S. TIC10/ONC201: a bend in the road to clinical development. Oncoscience. 2015;2(2):75-76.
Prabhu VV, Allen JE, Dicker DT, El-Deiry WS. Small-molecule ONC201/TIC10 targets chemotherapy-resistant colorectal cancer stem-like cells in an Akt/Foxo3a/TRAIL-dependent manner. Cancer Res. 2015;75(7):1423-1432.
Xu J, Zhou JY, Wei WZ, Wu GS. Activation of the Akt survival pathway contributes to TRAIL resistance in cancer cells. PLoS One. 2010;5(4):e10226.
Watt V, Chamberlain J, Steiner T, Francis S, Crossman D. TRAIL attenuates the development of atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis. 2011;215(2):348-354.
Nho RS, Hergert P. FoxO3a and disease progression. World J Biol Chem. 2014;5(3):346-354.
Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 2011;1813(11):1978-1986.
Potente M, Urbich C, Sasaki K et al Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest. 2005;115(9):2382-2392.
Oellerich MF, Potente M. FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ Res. 2012;110(9):1238-1251.
Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene. 2008;27(16):2312-2319.
Kumar R, Herbert PE, Warrens AN. An introduction to death receptors in apoptosis. Int J Surg. 2005;3(4):268-277.
Modur V, Nagarajan R, Evers BM, Milbrandt J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem. 2002;277(49):47928-47937.
Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014;2014:925350.
Liu Y, Ao X, Ding W et al Critical role of FOXO3a in carcinogenesis. Mol Cancer. 2018;17(1):104.
Lee HY, Youn SW, Cho HJ et al FOXO1 impairs whereas statin protects endothelial function in diabetes through reciprocal regulation of Kruppel-like factor 2. Cardiovasc Res. 2013;97(1):143-152.
Zhou J, Liao W, Yang J et al FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy. 2012;8(12):1712-1723.
Morris JB, Kenney B, Huynh H, Woodcock EA. Regulation of the proapoptotic factor FOXO1 (FKHR) in cardiomyocytes by growth factors and alpha1-adrenergic agonists. Endocrinology. 2005;146(10):4370-4376.
Talekar MK, Allen JE, Dicker DT, El-Deiry WS. ONC201 induces cell death in pediatric non-Hodgkin's lymphoma cells. Cell Cycle. 2015;14(15):2422-2428.
Truneh A, Sharma S, Silverman C et al Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J Biol Chem. 2000;275(30):23319-23325.
Chao SC, Chen YJ, Huang KH et al Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci Rep. 2017;7(1):3180.
Xia N, Strand S, Schlufter F et al Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide. 2013;32:29-35.
Potente M, Ghaeni L, Baldessari D et al SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007;21(20):2644-2658.
Iaccarino G, Ciccarelli M, Sorriento D et al AKT participates in endothelial dysfunction in hypertension. Circulation. 2004;109(21):2587-2593.