Sympatric ecological divergence with coevolution of niche preference
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32654636
PubMed Central
PMC7423286
DOI
10.1098/rstb.2019.0749
Knihovny.cz E-zdroje
- Klíčová slova
- Levene model, epistasis, maintenance of polymorphism, polygenic trait, sympatric speciation, trade-off,
- MeSH
- ekosystém * MeSH
- modely genetické MeSH
- multifaktoriální dědičnost MeSH
- polymorfismus genetický MeSH
- reprodukční izolace * MeSH
- selekce (genetika) MeSH
- sympatrie * MeSH
- tok genů * MeSH
- vznik druhů (genetika) * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Reinforcement, the increase of assortative mating driven by selection against unfit hybrids, is conditional on pre-existing divergence. Yet, for ecological divergence to precede the evolution of assortment, strict symmetries between fitnesses in niches must hold, and/or there must be low gene flow between the nascent species. It has thus been argued that conditions favouring sympatric speciation are rarely met in nature. Indeed, we show that under disruptive selection, violating symmetries in niche sizes and increasing strength of the trade-off in selection between the niches quickly leads to loss of genetic variation, instead of evolution of specialists. The region of the parameter space where polymorphism is maintained further narrows with increasing number of loci encoding the diverging trait and the rate of recombination between them. Yet, evolvable assortment and pre-existing assortment both substantially broaden the parameter space within which polymorphism is maintained. Notably, pre-existing niche preference speeds up further increase of assortment, thus facilitating reinforcement in the later phases of speciation. We conclude that in order for sympatric ecological divergence to occur, niche preference must coevolve throughout the divergence process. Even if populations come into secondary contact, having diverged in isolation, niche preference substantially broadens the conditions for coexistence in sympatry and completion of the speciation process. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Department of Zoology Charles University Prague Czech Republic
Faculty of Mathematics University of Vienna Wien Austria
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Darwin C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London, UK: John Murray. PubMed PMC
Mayr E. 1963. Animal species and evolution. Cambridge, MA: The Belknap Press of Harvard University Press.
Jiggins CD. 2006. Sympatric speciation: why the controversy? Curr. Biol. 16, R333–R334. (10.1016/j.cub.2006.03.077) PubMed DOI
Bolnick DI, Fitzpatrick BM. 2007. Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38, 459–487. (10.1146/annurev.ecolsys.38.091206.095804) DOI
Via S. 2001. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol. 16, 381–390. (10.1016/S0169-5347(01)02188-7) PubMed DOI
Dobzhansky TH. 1940. Speciation as a stage in evolutionary divergence. Am. Nat. 74, 312–321. (10.1086/280899) DOI
Felsenstein J. 1981. Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35, 124–138. (10.2307/2407946) PubMed DOI
Maynard-Smith JM. 1966. Sympatric speciation. Am. Nat. 100, 637–650. (10.1086/282457) DOI
Udovic D. 1980. Frequency-dependent selection, disruptive selection, and the evolution of reproductive isolation. Am. Nat. 116, 621–641. (10.1086/283654) DOI
Gavrilets S. 2003. Perspective: models of speciation: what have we learned in 40 years? Evolution 57, 2197–2215. (10.1111/j.0014-3820.2003.tb00233.x) PubMed DOI
Barton NH, de Cara MAR. 2009. The evolution of strong reproductive isolation. Evolution 63, 1171–1190. (10.1111/j.1558-5646.2009.00622.x) PubMed DOI
Berlocher SH, Feder JL. 2002. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu. Rev. Entomol. 47, 773–815. (10.1146/annurev.ento.47.091201.145312) PubMed DOI
Greenwood PJ. 1980. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162. (10.1016/S0003-3472(80)80103-5) DOI
Lavagnino N, Serra F, Arbiza L, Dopazo H, Hasson E. 2012. Evolutionary genomics of genes involved in olfactory behavior in the Drosophila melanogaster species group. Evol. Bioinform. 8, 89–104. (10.4137/EBO.S8484) PubMed DOI PMC
Rice WR, Salt GW. 1990. The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence. Evolution 44, 1140–1152. (10.1111/j.1558-5646.1990.tb05221.x) PubMed DOI
Ravigné V, Dieckmann U, Olivieri I. 2009. Live where you thrive: joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity. Am. Nat. 174, E141–E169. (10.1086/605369) PubMed DOI
Butlin R. 1987. A new approach to sympatric speciation. Trends Ecol. Evol. 2, 310–311. (10.1016/0169-5347(87)90085-1) PubMed DOI
Jaenike J, Holt RD. 1991. Genetic variation for habitat preference: evidence and explanations. Am. Nat. 137, S67–S90. (10.1086/285140) DOI
Via S. 1991. The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45, 827–852. (10.1111/j.1558-5646.1991.tb04353.x) PubMed DOI
Mackenzie A. 1996. A trade-off for host plant utilization in the black bean aphid, Aphis fabae. Evolution 50, 155–162. (10.1111/j.1558-5646.1996.tb04482.x) PubMed DOI
Sezer M, Butlin RK. 1998. The genetic basis of host plant adaptation in the brown planthopper (Nilaparvata lugens). Heredity 80, 499–508. (10.1046/j.1365-2540.1998.00316.x) DOI
Rossi AM, Stiling P, Cattell MV, Bowdish TI. 1999. Evidence for host-associated races in a gall-forming midge: trade-offs in potential fecundity. Ecol. Entomol. 24, 95–102. (10.1046/j.1365-2311.1999.00164.x) DOI
Craig TP, Horner JD, Itami JK. 2007. Genetics, experience, and host-plant preference in Eurosta solidaginis: implications for host shifts and speciation. Evolution 55, 773–782. (10.1111/j.0014-3820.2001.tb00813.x) PubMed DOI
Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT. 2012. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93, 981–991. (10.1890/11-0650.1) PubMed DOI
Gripenberg S, Mayhew PJ, Parnell M, Roslin T. 2010. A meta-analysis of preference–performance relationships in phytophagous insects. Ecol. Lett. 13, 383–393. (10.1111/j.1461-0248.2009.01433.x) PubMed DOI
Christiansen FB. 1975. Hard and soft selection in a subdivided population. Am. Nat. 109, 11–16. (10.1086/282970) DOI
Ravigné V, Olivieri I, Dieckmann U. 2004. Implications of habitat choice for protected polymorphisms. Evol. Ecol. Res. 6, 125–145.
Rieseberg LH. 2001. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358. (10.1016/s0169-5347(01)02187-5) PubMed DOI
Levene H. 1953. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87, 331 (10.1086/281792) DOI
Deakin MAB. 1966. Sufficent conditions for genetic polymorphism. Am. Nat. 100, 690–692. (10.1086/282462) DOI
Prout T. 1968. Sufficient conditions for multiple niche polymorphism. Am. Nat. 102, 493–496. (10.1086/282562) DOI
Hoekstra RF, Bijlsma R, Dolman AJ. 1985. Polymorphism from environmental heterogeneity: models are only robust if the heterozygote is close in fitness to the favoured homozygote in each environment. Genet. Res. 45, 299–314. (10.1017/S001667230002228X) PubMed DOI
Gliddon C, Strobeck C. 1975. Necessary and sufficient conditions for multiple-niche polymorphism in haploids. Am. Nat. 109, 233–235. (10.1086/282991) DOI
de Meeûs T, Michalakis Y, Renaud F, Olivieri I. 1993. Polymorphism in heterogeneous environments, evolution of habitat selection and sympatric speciation: soft and hard selection models. Evol. Ecol. 7, 175–198. (10.1007/BF01239387) DOI
Nosil P, Feder JL, Flaxman SM, Gompert Z. 2017. Tipping points in the dynamics of speciation. Nat. Ecol. Evol. 1, 0001 (10.1038/s41559-016-0001) PubMed DOI
Wilson DS, Turelli M. 1986. Stable underdominance and the evolutionary invasion of empty niches. Am. Nat. 127, 835–850. (10.1086/284528) DOI
Nagylaki T. 2009. Evolution under the multilocus Levene model without epistasis. Theor. Popul. Biol. 76, 197–213. (10.1016/j.tpb.2009.07.003) PubMed DOI
Bürger R. 2010. Evolution and polymorphism in the multilocus Levene model with no or weak epistasis. Theor. Popul. Biol. 78, 123–138. (10.1016/j.tpb.2010.06.002) PubMed DOI PMC
Barton NH. 2010. What role does natural selection play in speciation? Phil. Trans. R. Soc. B 365, 1825–1840. (10.1098/rstb.2010.0001) PubMed DOI PMC
Shpak M, Kondrashov AS. 1999. Applicability of the hypergeometric phenotypic model to haploid and diploid populations. Evolution 53, 600–604. (10.1111/j.1558-5646.1999.tb03794.x) PubMed DOI
Kisdi É, Geritz SAH. 1999. Adaptive dynamics in allele space: evolution of genetic polymorphism by small mutations in a heterogeneous environment. Evolution 53, 993–1008. (10.1111/j.1558-5646.1999.tb04515.x) PubMed DOI
Maynard-Smith J, Hoekstra R. 1980. Polymorphism in a varied environment: how robust are the models? Genet. Res. 35, 45–57. (10.1017/S0016672300013926) PubMed DOI
Barton NH. 1983. Multilocus clines. Evolution 37, 454 (10.2307/2408260) PubMed DOI
Priklopil T. 2012. On invasion boundaries and the unprotected coexistence of two strategies. J. Math. Biol. 64, 1137–1156. (10.1007/s00285-011-0448-y) PubMed DOI
Novak S. 2011. The number of equilibria in the diallelic Levene model with multiple demes. Theor. Popul. Biol. 79, 97–101. (10.1016/j.tpb.2010.12.002) PubMed DOI PMC
Beltman JB, Haccou P, Cate CT. 2004. Learning and colonization of new niches: a first step toward speciation. Evolution 58, 35–46. (10.1111/j.0014-3820.2004.tb01571.x) PubMed DOI
Beltman JB, Metz JAJ. 2005. Speciation: more likely through a genetic or through a learned habitat preference? Proc. R. Soc. B 272, 1455–1463. (10.1098/rspb.2005.3104) PubMed DOI PMC
Wells DM, French AP, Naeem A, Ishaq O, Traini R, Hijazi H, Bennett MJ, Pridmore TP. 2012. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods. Phil. Trans. R. Soc. B 367, 1517–1524. (10.1098/rstb.2011.0291) PubMed DOI PMC
Arkowitz RA. 1999. Responding to attraction: chemotaxis and chemotropism in Dictyostelium and yeast. Trends Cell Biol. 9, 20–27. (10.1016/s0962-8924(98)01412-3) PubMed DOI
Xie L, Altindal T, Chattopadhyay S, Wu X-L. 2011. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc. Natl Acad. Sci. USA 108, 2246–2251. (10.1073/pnas.1011953108) PubMed DOI PMC
Berthels NJ, Cordero Otero RR, Bauer FF, Thevelein JM, Pretorius IS. 2004. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 4, 683–689. (10.1016/j.femsyr.2004.02.005) PubMed DOI
Bren A, Park JO, Towbin BD, Dekel E, Rabinowitz JD, Alon U. 2016. Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci. Rep. 6, 1–10. (10.1038/srep24834) PubMed DOI PMC
Nouhuys SV, Singer MC, Nieminen M. 2003. Spatial and temporal patterns of caterpillar performance and the suitability of two host plant species. Ecol. Entomol. 28, 193–202. (10.1046/j.1365-2311.2003.00501.x) DOI
Sinervo B. 1997. Optimal foraging theory: constraints and cognitive processes. In Behavioral Ecology, pp. 105–130. Santa Cruz, CA: University of California.
figshare
10.6084/m9.figshare.c.5005178