Sympatric ecological divergence with coevolution of niche preference

. 2020 Aug 31 ; 375 (1806) : 20190749. [epub] 20200713

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32654636

Reinforcement, the increase of assortative mating driven by selection against unfit hybrids, is conditional on pre-existing divergence. Yet, for ecological divergence to precede the evolution of assortment, strict symmetries between fitnesses in niches must hold, and/or there must be low gene flow between the nascent species. It has thus been argued that conditions favouring sympatric speciation are rarely met in nature. Indeed, we show that under disruptive selection, violating symmetries in niche sizes and increasing strength of the trade-off in selection between the niches quickly leads to loss of genetic variation, instead of evolution of specialists. The region of the parameter space where polymorphism is maintained further narrows with increasing number of loci encoding the diverging trait and the rate of recombination between them. Yet, evolvable assortment and pre-existing assortment both substantially broaden the parameter space within which polymorphism is maintained. Notably, pre-existing niche preference speeds up further increase of assortment, thus facilitating reinforcement in the later phases of speciation. We conclude that in order for sympatric ecological divergence to occur, niche preference must coevolve throughout the divergence process. Even if populations come into secondary contact, having diverged in isolation, niche preference substantially broadens the conditions for coexistence in sympatry and completion of the speciation process. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.

Zobrazit více v PubMed

Darwin C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London, UK: John Murray. PubMed PMC

Mayr E. 1963. Animal species and evolution. Cambridge, MA: The Belknap Press of Harvard University Press.

Jiggins CD. 2006. Sympatric speciation: why the controversy? Curr. Biol. 16, R333–R334. (10.1016/j.cub.2006.03.077) PubMed DOI

Bolnick DI, Fitzpatrick BM. 2007. Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38, 459–487. (10.1146/annurev.ecolsys.38.091206.095804) DOI

Via S. 2001. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol. 16, 381–390. (10.1016/S0169-5347(01)02188-7) PubMed DOI

Dobzhansky TH. 1940. Speciation as a stage in evolutionary divergence. Am. Nat. 74, 312–321. (10.1086/280899) DOI

Felsenstein J. 1981. Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35, 124–138. (10.2307/2407946) PubMed DOI

Maynard-Smith JM. 1966. Sympatric speciation. Am. Nat. 100, 637–650. (10.1086/282457) DOI

Udovic D. 1980. Frequency-dependent selection, disruptive selection, and the evolution of reproductive isolation. Am. Nat. 116, 621–641. (10.1086/283654) DOI

Gavrilets S. 2003. Perspective: models of speciation: what have we learned in 40 years? Evolution 57, 2197–2215. (10.1111/j.0014-3820.2003.tb00233.x) PubMed DOI

Barton NH, de Cara MAR. 2009. The evolution of strong reproductive isolation. Evolution 63, 1171–1190. (10.1111/j.1558-5646.2009.00622.x) PubMed DOI

Berlocher SH, Feder JL. 2002. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu. Rev. Entomol. 47, 773–815. (10.1146/annurev.ento.47.091201.145312) PubMed DOI

Greenwood PJ. 1980. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162. (10.1016/S0003-3472(80)80103-5) DOI

Lavagnino N, Serra F, Arbiza L, Dopazo H, Hasson E. 2012. Evolutionary genomics of genes involved in olfactory behavior in the Drosophila melanogaster species group. Evol. Bioinform. 8, 89–104. (10.4137/EBO.S8484) PubMed DOI PMC

Rice WR, Salt GW. 1990. The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence. Evolution 44, 1140–1152. (10.1111/j.1558-5646.1990.tb05221.x) PubMed DOI

Ravigné V, Dieckmann U, Olivieri I. 2009. Live where you thrive: joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity. Am. Nat. 174, E141–E169. (10.1086/605369) PubMed DOI

Butlin R. 1987. A new approach to sympatric speciation. Trends Ecol. Evol. 2, 310–311. (10.1016/0169-5347(87)90085-1) PubMed DOI

Jaenike J, Holt RD. 1991. Genetic variation for habitat preference: evidence and explanations. Am. Nat. 137, S67–S90. (10.1086/285140) DOI

Via S. 1991. The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45, 827–852. (10.1111/j.1558-5646.1991.tb04353.x) PubMed DOI

Mackenzie A. 1996. A trade-off for host plant utilization in the black bean aphid, Aphis fabae. Evolution 50, 155–162. (10.1111/j.1558-5646.1996.tb04482.x) PubMed DOI

Sezer M, Butlin RK. 1998. The genetic basis of host plant adaptation in the brown planthopper (Nilaparvata lugens). Heredity 80, 499–508. (10.1046/j.1365-2540.1998.00316.x) DOI

Rossi AM, Stiling P, Cattell MV, Bowdish TI. 1999. Evidence for host-associated races in a gall-forming midge: trade-offs in potential fecundity. Ecol. Entomol. 24, 95–102. (10.1046/j.1365-2311.1999.00164.x) DOI

Craig TP, Horner JD, Itami JK. 2007. Genetics, experience, and host-plant preference in Eurosta solidaginis: implications for host shifts and speciation. Evolution 55, 773–782. (10.1111/j.0014-3820.2001.tb00813.x) PubMed DOI

Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT. 2012. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93, 981–991. (10.1890/11-0650.1) PubMed DOI

Gripenberg S, Mayhew PJ, Parnell M, Roslin T. 2010. A meta-analysis of preference–performance relationships in phytophagous insects. Ecol. Lett. 13, 383–393. (10.1111/j.1461-0248.2009.01433.x) PubMed DOI

Christiansen FB. 1975. Hard and soft selection in a subdivided population. Am. Nat. 109, 11–16. (10.1086/282970) DOI

Ravigné V, Olivieri I, Dieckmann U. 2004. Implications of habitat choice for protected polymorphisms. Evol. Ecol. Res. 6, 125–145.

Rieseberg LH. 2001. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358. (10.1016/s0169-5347(01)02187-5) PubMed DOI

Levene H. 1953. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87, 331 (10.1086/281792) DOI

Deakin MAB. 1966. Sufficent conditions for genetic polymorphism. Am. Nat. 100, 690–692. (10.1086/282462) DOI

Prout T. 1968. Sufficient conditions for multiple niche polymorphism. Am. Nat. 102, 493–496. (10.1086/282562) DOI

Hoekstra RF, Bijlsma R, Dolman AJ. 1985. Polymorphism from environmental heterogeneity: models are only robust if the heterozygote is close in fitness to the favoured homozygote in each environment. Genet. Res. 45, 299–314. (10.1017/S001667230002228X) PubMed DOI

Gliddon C, Strobeck C. 1975. Necessary and sufficient conditions for multiple-niche polymorphism in haploids. Am. Nat. 109, 233–235. (10.1086/282991) DOI

de Meeûs T, Michalakis Y, Renaud F, Olivieri I. 1993. Polymorphism in heterogeneous environments, evolution of habitat selection and sympatric speciation: soft and hard selection models. Evol. Ecol. 7, 175–198. (10.1007/BF01239387) DOI

Nosil P, Feder JL, Flaxman SM, Gompert Z. 2017. Tipping points in the dynamics of speciation. Nat. Ecol. Evol. 1, 0001 (10.1038/s41559-016-0001) PubMed DOI

Wilson DS, Turelli M. 1986. Stable underdominance and the evolutionary invasion of empty niches. Am. Nat. 127, 835–850. (10.1086/284528) DOI

Nagylaki T. 2009. Evolution under the multilocus Levene model without epistasis. Theor. Popul. Biol. 76, 197–213. (10.1016/j.tpb.2009.07.003) PubMed DOI

Bürger R. 2010. Evolution and polymorphism in the multilocus Levene model with no or weak epistasis. Theor. Popul. Biol. 78, 123–138. (10.1016/j.tpb.2010.06.002) PubMed DOI PMC

Barton NH. 2010. What role does natural selection play in speciation? Phil. Trans. R. Soc. B 365, 1825–1840. (10.1098/rstb.2010.0001) PubMed DOI PMC

Shpak M, Kondrashov AS. 1999. Applicability of the hypergeometric phenotypic model to haploid and diploid populations. Evolution 53, 600–604. (10.1111/j.1558-5646.1999.tb03794.x) PubMed DOI

Kisdi É, Geritz SAH. 1999. Adaptive dynamics in allele space: evolution of genetic polymorphism by small mutations in a heterogeneous environment. Evolution 53, 993–1008. (10.1111/j.1558-5646.1999.tb04515.x) PubMed DOI

Maynard-Smith J, Hoekstra R. 1980. Polymorphism in a varied environment: how robust are the models? Genet. Res. 35, 45–57. (10.1017/S0016672300013926) PubMed DOI

Barton NH. 1983. Multilocus clines. Evolution 37, 454 (10.2307/2408260) PubMed DOI

Priklopil T. 2012. On invasion boundaries and the unprotected coexistence of two strategies. J. Math. Biol. 64, 1137–1156. (10.1007/s00285-011-0448-y) PubMed DOI

Novak S. 2011. The number of equilibria in the diallelic Levene model with multiple demes. Theor. Popul. Biol. 79, 97–101. (10.1016/j.tpb.2010.12.002) PubMed DOI PMC

Beltman JB, Haccou P, Cate CT. 2004. Learning and colonization of new niches: a first step toward speciation. Evolution 58, 35–46. (10.1111/j.0014-3820.2004.tb01571.x) PubMed DOI

Beltman JB, Metz JAJ. 2005. Speciation: more likely through a genetic or through a learned habitat preference? Proc. R. Soc. B 272, 1455–1463. (10.1098/rspb.2005.3104) PubMed DOI PMC

Wells DM, French AP, Naeem A, Ishaq O, Traini R, Hijazi H, Bennett MJ, Pridmore TP. 2012. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods. Phil. Trans. R. Soc. B 367, 1517–1524. (10.1098/rstb.2011.0291) PubMed DOI PMC

Arkowitz RA. 1999. Responding to attraction: chemotaxis and chemotropism in Dictyostelium and yeast. Trends Cell Biol. 9, 20–27. (10.1016/s0962-8924(98)01412-3) PubMed DOI

Xie L, Altindal T, Chattopadhyay S, Wu X-L. 2011. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc. Natl Acad. Sci. USA 108, 2246–2251. (10.1073/pnas.1011953108) PubMed DOI PMC

Berthels NJ, Cordero Otero RR, Bauer FF, Thevelein JM, Pretorius IS. 2004. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 4, 683–689. (10.1016/j.femsyr.2004.02.005) PubMed DOI

Bren A, Park JO, Towbin BD, Dekel E, Rabinowitz JD, Alon U. 2016. Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci. Rep. 6, 1–10. (10.1038/srep24834) PubMed DOI PMC

Nouhuys SV, Singer MC, Nieminen M. 2003. Spatial and temporal patterns of caterpillar performance and the suitability of two host plant species. Ecol. Entomol. 28, 193–202. (10.1046/j.1365-2311.2003.00501.x) DOI

Sinervo B. 1997. Optimal foraging theory: constraints and cognitive processes. In Behavioral Ecology, pp. 105–130. Santa Cruz, CA: University of California.

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5005178

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace