Modeling Approaches Reveal New Regulatory Networks in Aspergillus fumigatus Metabolism
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PGR13XNIDJ
The Italian Grant "Programma per Giovani Ricercatori - Rita Levi Montalcini 2013
Project MAGNET CZ.02.1.01/0.0/0.0/15_003/0000492
European Social Fund and European Regional Development Fund
ENOCH CZ.02.1.01/0.0/0.0/16_019/0000868
European Social Fund and European Regional Development Fund
NV18-06-00529
Ministry of Health of the Czech Republic
PubMed
32674323
PubMed Central
PMC7557846
DOI
10.3390/jof6030108
PII: jof6030108
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus fumigatus, Bayesian networks, continuous time Bayesian networks, gene network inference, gene network reconstruction, modeling, tryptophan metabolism,
- Publikační typ
- časopisecké články MeSH
Systems biology approaches are extensively used to model and reverse-engineer gene regulatory networks from experimental data. Indoleamine 2,3-dioxygenases (IDOs)-belonging in the heme dioxygenase family-degrade l-tryptophan to kynurenines. These enzymes are also responsible for the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As such, they are expressed by a variety of species, including fungi. Interestingly, Aspergillus may degrade l-tryptophan not only via IDO but also via alternative pathways. Deciphering the molecular interactions regulating tryptophan metabolism is particularly critical for novel drug target discovery designed to control pathogen determinants in invasive infections. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling l-tryptophan metabolism. The method unravels a possible novel approach to target fungal virulence factors during infection. Furthermore, this study represents the first application of continuous-time Bayesian networks as a gene network reconstruction method in Aspergillus metabolism. The experiment showed that the applied computational approach may improve the understanding of metabolic networks over traditional pathways.
Department of Experimental Medicine University of Perugia 06132 Perugia Italy
Institute of Hematology and Blood Transfusion 12800 Prague Czech Republic
Zobrazit více v PubMed
Cantone I., Marucci L., Iorio F., Ricci M.A., Belcastro V., Bansal M., Santini S., di Bernardo M., di Bernardo D., Cosma M.P. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell. 2009;137:172–181. doi: 10.1016/j.cell.2009.01.055. PubMed DOI
Choera T., Zelante T., Romani L., Keller N.P. A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus-Host Interactions. Front. Immunol. 2017;8:1996. doi: 10.3389/fimmu.2017.01996. PubMed DOI PMC
Keller N.P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 2019;17:167–180. doi: 10.1038/s41579-018-0121-1. PubMed DOI PMC
Wang P.M., Choera T., Wiemann P., Pisithkul T., Amador-Noguez D., Keller N.P. TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genet. Biol. 2016;89:102–113. doi: 10.1016/j.fgb.2015.12.002. PubMed DOI PMC
Arenas-Huertero F., Zaragoza-Ojeda M., Sanchez-Alarcon J., Milic M., Segvic Klaric M., Montiel-Gonzalez J.M., Valencia-Quintana R. Involvement of Ahr Pathway in Toxicity of Aflatoxins and Other Mycotoxins. Front. Microbiol. 2019;10:2347. doi: 10.3389/fmicb.2019.02347. PubMed DOI PMC
Ayed-Boussema I., Pascussi J.M., Zaied C., Maurel P., Bacha H., Hassen W. Ochratoxin A induces CYP3A4, 2B6, 3A5, 2C9, 1A1, and CYP1A2 gene expression in primary cultured human hepatocytes: A possible activation of nuclear receptors. Drug. Chem. Toxicol. 2012;35:71–80. doi: 10.3109/01480545.2011.589438. PubMed DOI
Neavin D.R., Liu D., Ray B., Weinshilboum R.M. The Role of the Aryl Hydrocarbon Receptor (AHR) in Immune and Inflammatory Diseases. Int. J. Mol. Sci. 2018;19:3851. doi: 10.3390/ijms19123851. PubMed DOI PMC
Yuasa H.J., Ball H.J. The evolution of three types of indoleamine 2,3 dioxygenases in fungi with distinct molecular and biochemical characteristics. Gene. 2012;504:64–74. doi: 10.1016/j.gene.2012.04.082. PubMed DOI
Raffa N., Keller N.P. A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog. 2019;15:e1007606. doi: 10.1371/journal.ppat.1007606. PubMed DOI PMC
Marbach D., Costello J.C., Kuffner R., Vega N.M., Prill R.J., Camacho D.M., Allison K.R., Consortium D., Kellis M., Collins J.J., et al. Wisdom of crowds for robust gene network inference. Nat. Methods. 2012;9:796–804. doi: 10.1038/nmeth.2016. PubMed DOI PMC
Feist A.M., Herrgard M.J., Thiele I., Reed J.L., Palsson B.O. Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 2009;7:129–143. doi: 10.1038/nrmicro1949. PubMed DOI PMC
Friedman N., Linial M., Nachman I., Pe’er D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 2000;7:601–620. doi: 10.1089/106652700750050961. PubMed DOI
Zhu J., Wiener M.C., Zhang C., Fridman A., Minch E., Lum P.Y., Sachs J.R., Schadt E.E. Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput. Biol. 2007;3:e69. doi: 10.1371/journal.pcbi.0030069. PubMed DOI PMC
Sachs K., Perez O., Pe’er D., Lauffenburger D.A., Nolan G.P. Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005;308:523–529. doi: 10.1126/science.1105809. PubMed DOI
Hirose O., Yoshida R., Imoto S., Yamaguchi R., Higuchi T., Charnock-Jones D.S., Print C., Miyano S. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics. 2008;24:932–942. doi: 10.1093/bioinformatics/btm639. PubMed DOI
Shmulevich I., Dougherty E.R., Kim S., Zhang W. Probabilistic Boolean Networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics. 2002;18:261–274. doi: 10.1093/bioinformatics/18.2.261. PubMed DOI
Li P., Zhang C., Perkins E.J., Gong P., Deng Y. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinform. 2007;8(Suppl. 7):S13. doi: 10.1186/1471-2105-8-S7-S13. PubMed DOI PMC
Acerbi E., Zelante T., Narang V., Stella F. Gene network inference using continuous time Bayesian networks: A comparative study and application to Th17 cell differentiation. BMC Bioinform. 2014;15:387. doi: 10.1186/s12859-014-0387-x. PubMed DOI PMC
Pearl J. An introduction to causal inference. Int. J. Biostat. 2010;6 doi: 10.2202/1557-4679.1203. PubMed DOI PMC
Delgado F.M., Gomez-Vela F. Computational methods for Gene Regulatory Networks reconstruction and analysis: A review. Artif. Intell. Med. 2019;95:133–145. doi: 10.1016/j.artmed.2018.10.006. PubMed DOI
Acerbi E., Vigano E., Poidinger M., Mortellaro A., Zelante T., Stella F. Continuous time Bayesian networks identify Prdm1 as a negative regulator of TH17 cell differentiation in humans. Sci. Rep. 2016;6:23128. doi: 10.1038/srep23128. PubMed DOI PMC
Shimizu K., Keller N.P. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics. 2001;157:591–600. PubMed PMC
da Silva Ferreira M.E., Kress M.R., Savoldi M., Goldman M.H., Hartl A., Heinekamp T., Brakhage A.A., Goldman G.H. The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot. Cell. 2006;5:207–211. doi: 10.1128/EC.5.1.207-211.2006. PubMed DOI PMC
Sambrook J., Russell D. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.
Szewczyk E., Nayak T., Oakley C.E., Edgerton H., Xiong Y., Taheri-Talesh N., Osmani S.A., Oakley B.R. Fusion PCR and gene targeting in Aspergillus nidulans. Nat. Protoc. 2006;1:3111–3120. doi: 10.1038/nprot.2006.405. PubMed DOI
Lim F.Y., Sanchez J.F., Wang C.C., Keller N.P. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol. 2012;517:303–324. PubMed PMC
Lee G.K., Park H.J., Macleod M., Chandler P., Munn D.H., Mellor A.L. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology. 2002;107:452–460. doi: 10.1046/j.1365-2567.2002.01526.x. PubMed DOI PMC
Bessede A., Gargaro M., Pallotta M.T., Matino D., Servillo G., Brunacci C., Bicciato S., Mazza E.M., Macchiarulo A., Vacca C., et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature. 2014;511:184–190. doi: 10.1038/nature13323. PubMed DOI PMC
Badawy A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017;10:1178646917691938. doi: 10.1177/1178646917691938. PubMed DOI PMC
Ball H.J., Jusof F.F., Bakmiwewa S.M., Hunt N.H., Yuasa H.J. Tryptophan-catabolizing enzymes—Party of three. Front. Immunol. 2014;5:485. doi: 10.3389/fimmu.2014.00485. PubMed DOI PMC
Dindo M., Costanzi E., Pieroni M., Costantini C., Annunziato G., Bruno A., Keller N.P., Romani L., Zelante T., Cellini B. Biochemical Characterization of Aspergillus fumigatus AroH, a Putative Aromatic Amino Acid Aminotransferase. Front. Mol. Biosci. 2018;5:104. doi: 10.3389/fmolb.2018.00104. PubMed DOI PMC
Esser D.S., Leveau J.H., Meyer K.M. Modeling microbial growth and dynamics. Appl. Microbiol. Biotechnol. 2015;99:8831–8846. doi: 10.1007/s00253-015-6877-6. PubMed DOI
Bower D.S., Mengersen K., Alford R.A., Schwarzkopf L. Using a Bayesian network to clarify areas requiring research in a host-pathogen system. Conserv. Biol. 2017;31:1373–1382. doi: 10.1111/cobi.12950. PubMed DOI
Aspergillus fumigatus tryptophan metabolic route differently affects host immunity