• This record comes from PubMed

De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides-Baraitser syndrome

. 2020 Nov ; 22 (11) : 1838-1850. [epub] 20200722

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
209568/Z/17/Z Wellcome Trust - United Kingdom
GSP15001 Telethon - Italy
Department of Health - United Kingdom

PURPOSE: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.

Birmingham Women's NHS Foundation Trust Birmingham UK

Cambridge University Hospitals NHS Foundation Trust Cambridge Biomedical Campus Cambridge UK

Centre de génétique humaine Université de Franche Comté Besançon France

Centre de Référence Déficiences Intellectuelles de Causes Rares CHU Dijon Dijon France

Clinical Genetics Great Ormond Street Hospital for Children NHS Foundation Trust London UK

CPDPN Pôle mère enfant Maison de Santé Protestante Bordeaux Bagatelle Talence France

Dell Children's Medical Group Austin TX USA

Department of Biology and Medical Genetics Charles University Prague 2nd Faculty of Medicine and University Hospital Motol Prague Czech Republic

Department of Genetics and Metabolism Children's National Medical Center Washington DC USA

Department of Genetics and Reproduction Centre Hospitalo Universitaire Grenoble Alpes Grenoble France

Department of Genetics Robert Debré Hospital AP HP Paris France

Department of Genome Sciences University of Washington School of Medicine Seattle WA USA

Department of Medical and Molecular Genetics King's College London UK

Department of Medical Genetics Osaka Women's and Children's Hospital Osaka Japan

Department of Medical Genetics Poitiers University Hospital Poitiers France

Department of Pathology and Laboratory Medicine Western University London Canada

Department of Pediatrics and Translational Genetics Academic Medical Center University of Amsterdam Amsterdam The Netherlands

Department of Pediatrics The University of Texas at Austin Dell Medical School Austin TX USA

Department of Precision Medicine University of Campania Luigi Vanvitelli Naples Italy

Department of Translational Medicine Federico 2 University Naples Italy

Howard Hughes Medical Institute University of Washington Seattle WA USA

Inserm U1209 CNRS UMR 5309 Univ Grenoble Alpes Institute for Advanced Biosciences Grenoble France

Inserm UMR 1231 GAD Genetics of Developmental disorders Université de Bourgogne Franche Comté FHU TRANSLAD Dijon France

Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch France

Institute of Medical Genetics Tokyo Women's Medical University Tokyo Japan

Manchester Centre for Genomic Medicine Manchester UK

Medical Genetics Unit Hospital Pediátrico Centro Hospitalar e Universitário de Coimbra Coimbra Portugal

Molecular Genetics Laboratory Victoria Hospital London Health Sciences Centre London ON Canada

Oxford Centre for Genomic Medicine Oxford University Hospitals NHS Foundation Trust Oxford UK

Reference Center for Developmental Anomalies Department of Medical Genetics Bordeaux University Hospital Bordeaux France

Service de Génétique clinique CHU de Rennes Univ Rennes Institut de Génétique et Développement de Rennes UMR 6290 Rennes France

Service de Génétique Moléculaire et Génomique BMT HC « Jean Dausset » Rennes France

Telethon Institute of Genetics and Medicine Pozzuoli Italy

The Francis Crick Institute London UK

Tokyo Women's Medical University Institute of Integrated Medical Sciences Tokyo Japan

UF Innovation en diagnostic génomique des maladies rares CHU Dijon Dijon France

University Clinic of Genetics Faculty of Medicine Universidade de Coimbra Coimbra Portugal

University Hospitals Bristol NHS Foundation Trust University of Bristol Bristol UK

See more in PubMed

Menke LA, study DDD, Gardeitchik T, et al. Further delineation of an entity caused by CREBBP and EP300 mutations but not resembling Rubinstein-Taybi syndrome. Am J Med Genet A. 2018;176:862–876.

Hansen AW, Murugan M, Li H, et al. A genocentric approach to discovery of Mendelian disorders. Am J Hum Genet. 2019;105:974–986. PubMed PMC

Karaca E, Posey JE, Coban Akdemir Z, et al. Phenotypic expansion illuminates multilocus pathogenic variation. Genet Med. 2018;20:1528–1537. PubMed PMC

Schulze TG, McMahon FJ. Defining the phenotype in human genetic studies: forward genetics and reverse phenotyping. Hum Hered. 2004;58:131–138.

Hennekam RC, Biesecker LG. Next-generation sequencing demands next-generation phenotyping. Hum Mutat. 2012;33:884–886. PubMed PMC

Nicolaides P, Baraitser M. An unusual syndrome with mental retardation and sparse hair. Clin Dysmorphol. 1993;2:232–236.

Sousa SB, Hennekam RC, Nicolaides-Baraitser Syndrome International Consortium. Phenotype and genotype in Nicolaides–Baraitser syndrome. Am J Med Genet C Semin Med Genet. 2014;166C:302–314.

Van Houdt JK, Nowakowska BA, Sousa SB, et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides–Baraitser syndrome. Nat Genet. 2012;44:445–9, S441.

Wolff D, Endele S, Azzarello-Burri S, et al. In-frame deletion and missense mutations of the C-Terminal Helicase Domain of SMARCA2 in three patients with Nicolaides–Baraitser syndrome. Mol Syndromol. 2012;2:237–244. PubMed PMC

Borlot F, Regan BM, Bassett AS, Stavropoulos DJ, Andrade DM. Prevalence of pathogenic copy number variation in adults with pediatric-onset epilepsy and intellectual disability. JAMA Neurol. 2017;74:1301–1311. PubMed PMC

Sekiguchi F, Tsurusaki Y, Okamoto N, et al. Genetic abnormalities in a large cohort of Coffin–Siris syndrome patients. J Hum Genet. 2019;64:1173–1186. PubMed PMC

Santen GW, Kriek M, van Attikum H. SWI/SNF complex in disorder: switching from malignancies to intellectual disability. Epigenetics. 2012;7:1219–1224. PubMed PMC

Bramswig NC, Ludecke HJ, Alanay Y, et al. Exome sequencing unravels unexpected differential diagnoses in individuals with the tentative diagnosis of Coffin–Siris and Nicolaides–Baraitser syndromes. Hum Genet. 2015;134:553–568. PubMed PMC

Ejaz R, Babul-Hirji R, Chitayat D. The evolving features of Nicolaides–Baraitser syndrome—a clinical report of a 20-year follow-up. Clin Case Rep. 2016;4:351–355. PubMed PMC

Tang S, Hughes E, Lascelles K, Euro ERESmaewg, Simpson MA, Pal DK. New SMARCA2 mutation in a patient with Nicolaides–Baraitser syndrome and myoclonic astatic epilepsy. Am J Med Genet A. 2017;173:195–199. PubMed PMC

Gripp KW, Baker L, Telegrafi A, Monaghan KG. The role of objective facial analysis using FDNA in making diagnoses following whole exome analysis. Report of two patients with mutations in the BAF complex genes. Am J Med Genet A. 2016;170:1754–1762. PubMed PMC

Wieczorek D, Bogershausen N, Beleggia F, et al. A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum Mol Genet. 2013;22:5121–5135. PubMed PMC

Sanchez AI, Rojas JA. A SMARCA2 mutation in the first case report of Nicolaides–Baraitser syndrome in Latin America: genotype-phenotype correlation. Case Rep Genet. 2017;2017:8639617. PubMed PMC

Tsurusaki Y, Okamoto N, Ohashi H, et al. Mutations affecting components of the SWI/SNF complex cause Coffin–Siris syndrome. Nat Genet. 2012;44:376–378. PubMed PMC

Santen GW, Aten E, Vulto-van Silfhout AT, et al. Coffin–Siris syndrome and the BAF complex: genotype–phenotype study in 63 patients. Hum Mutat. 2013;34:1519–1528.

Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, et al. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev. 2019;41:776–782.

Mari F, Marozza A, Mencarelli MA, et al. Coffin–Siris and Nicolaides–Baraitser syndromes are a common well recognizable cause of intellectual disability. Brain Dev. 2015;37:527–536.

Kosho T, Okamoto N, Ohashi H, et al. Clinical correlations of mutations affecting six components of the SWI/SNF complex: detailed description of 21 patients and a review of the literature. Am J Med Genet A. 2013;161A:1221–1237.

Aref-Eshghi E, Bend EG, Hood RL, et al. BAFopathies’ DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin–Siris and Nicolaides–Baraitser syndromes. Nat Commun. 2018;9:4885. PubMed PMC

Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36:928–930. PubMed PMC

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424. PubMed PMC

Shaw WM, Yamauchi H, Mead J, et al. Engineering a model cell for rational tuning of GPCR signaling. Cell. 2019;177:782–96. e727. PubMed PMC

Gurovich Y, Hanani Y, Bar O, et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat Med. 2019;25:60–64.

Li M, Xia X, Tian Y, et al. Mechanism of DNA translocation underlying chromatin remodelling by Snf2. Nature. 2019;567:409–413. PubMed PMC

Mashtalir N, D’Avino AR, Michel BC, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175:1272–88. e1220. PubMed PMC

Schubert HL, Wittmeyer J, Kasten MM, et al. Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Proc Natl Acad Sci U S A. 2013;110:3345–3350. PubMed PMC

Han Y, Reyes AA, Malik S, He Y. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature. 2020;579:452–455. PubMed PMC

Neigeborn L, Carlson M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics. 1984;108:845–858. PubMed PMC

Minard LV, Lin LJ, Schultz MC. SWI/SNF and Asf1 independently promote derepression of the DNA damage response genes under conditions of replication stress. PLoS ONE. 2011;6:e21633. PubMed PMC

Chater-Diehl E, Ejaz R, Cytrynbaum C, et al. New insights into DNA methylation signatures: SMARCA2 variants in Nicolaides–Baraitser syndrome. BMC Med Genomics. 2019;12:105. PubMed PMC

van der Sluijs PJ, Jansen S, Vergano SA, et al. The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin–Siris syndrome. Genet Med. 2019;21:1295–1307. PubMed PMC

Krawitz P, Buske O, Zhu N, Brudno M, Robinson PN. The genomic birthday paradox: how much is enough? Hum Mutat. 2015;36:989–997. PubMed PMC

Hoischen A, Krumm N, Eichler EE. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci. 2014;17:764–772. PubMed PMC

Lee H, Deignan JL, Dorrani N, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880–1887. PubMed PMC

Vandeweyer G, Helsmoortel C, Van Dijck A, et al. The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism. Am J Med Genet C Semin Med Genet. 2014;166C:315–326.

Takenouchi T, Miwa T, Sakamoto Y, et al. Further evidence that a blepharophimosis syndrome phenotype is associated with a specific class of mutation in the ADNP gene. Am J Med Genet A. 2017;173:1631–1634.

Mandel S, Gozes I. Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex. J Biol Chem. 2007;282:34448–34456.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...