De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides-Baraitser syndrome
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
209568/Z/17/Z
Wellcome Trust - United Kingdom
GSP15001
Telethon - Italy
Department of Health - United Kingdom
PubMed
32694869
DOI
10.1038/s41436-020-0898-y
PII: S1098-3600(21)00785-1
Knihovny.cz E-resources
- Keywords
- BIS, Nicolaides–Baraitser syndrome, SMARCA2, intellectual disability, neurodevelopmental disorder,
- MeSH
- Blepharophimosis * MeSH
- Facies MeSH
- Phenotype MeSH
- Hypotrichosis * MeSH
- Humans MeSH
- Intellectual Disability * genetics MeSH
- Transcription Factors genetics MeSH
- Foot Deformities, Congenital MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- SMARCA2 protein, human MeSH Browser
- Transcription Factors MeSH
PURPOSE: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown. METHODS: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes. RESULTS: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification. CONCLUSION: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.
Birmingham Women's NHS Foundation Trust Birmingham UK
Cambridge University Hospitals NHS Foundation Trust Cambridge Biomedical Campus Cambridge UK
Centre de génétique humaine Université de Franche Comté Besançon France
Centre de Référence Déficiences Intellectuelles de Causes Rares CHU Dijon Dijon France
Clinical Genetics Great Ormond Street Hospital for Children NHS Foundation Trust London UK
CPDPN Pôle mère enfant Maison de Santé Protestante Bordeaux Bagatelle Talence France
Dell Children's Medical Group Austin TX USA
Department of Genetics and Metabolism Children's National Medical Center Washington DC USA
Department of Genetics Robert Debré Hospital AP HP Paris France
Department of Genome Sciences University of Washington School of Medicine Seattle WA USA
Department of Medical and Molecular Genetics King's College London UK
Department of Medical Genetics Osaka Women's and Children's Hospital Osaka Japan
Department of Medical Genetics Poitiers University Hospital Poitiers France
Department of Pathology and Laboratory Medicine Western University London Canada
Department of Pediatrics The University of Texas at Austin Dell Medical School Austin TX USA
Department of Precision Medicine University of Campania Luigi Vanvitelli Naples Italy
Department of Translational Medicine Federico 2 University Naples Italy
Howard Hughes Medical Institute University of Washington Seattle WA USA
Inserm U1209 CNRS UMR 5309 Univ Grenoble Alpes Institute for Advanced Biosciences Grenoble France
Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch France
Institute of Medical Genetics Tokyo Women's Medical University Tokyo Japan
Manchester Centre for Genomic Medicine Manchester UK
Molecular Genetics Laboratory Victoria Hospital London Health Sciences Centre London ON Canada
Oxford Centre for Genomic Medicine Oxford University Hospitals NHS Foundation Trust Oxford UK
Service de Génétique Moléculaire et Génomique BMT HC « Jean Dausset » Rennes France
Telethon Institute of Genetics and Medicine Pozzuoli Italy
The Francis Crick Institute London UK
Tokyo Women's Medical University Institute of Integrated Medical Sciences Tokyo Japan
UF Innovation en diagnostic génomique des maladies rares CHU Dijon Dijon France
University Clinic of Genetics Faculty of Medicine Universidade de Coimbra Coimbra Portugal
University Hospitals Bristol NHS Foundation Trust University of Bristol Bristol UK
See more in PubMed
Menke LA, study DDD, Gardeitchik T, et al. Further delineation of an entity caused by CREBBP and EP300 mutations but not resembling Rubinstein-Taybi syndrome. Am J Med Genet A. 2018;176:862–876.
Hansen AW, Murugan M, Li H, et al. A genocentric approach to discovery of Mendelian disorders. Am J Hum Genet. 2019;105:974–986. PubMed PMC
Karaca E, Posey JE, Coban Akdemir Z, et al. Phenotypic expansion illuminates multilocus pathogenic variation. Genet Med. 2018;20:1528–1537. PubMed PMC
Schulze TG, McMahon FJ. Defining the phenotype in human genetic studies: forward genetics and reverse phenotyping. Hum Hered. 2004;58:131–138.
Hennekam RC, Biesecker LG. Next-generation sequencing demands next-generation phenotyping. Hum Mutat. 2012;33:884–886. PubMed PMC
Nicolaides P, Baraitser M. An unusual syndrome with mental retardation and sparse hair. Clin Dysmorphol. 1993;2:232–236.
Sousa SB, Hennekam RC, Nicolaides-Baraitser Syndrome International Consortium. Phenotype and genotype in Nicolaides–Baraitser syndrome. Am J Med Genet C Semin Med Genet. 2014;166C:302–314.
Van Houdt JK, Nowakowska BA, Sousa SB, et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides–Baraitser syndrome. Nat Genet. 2012;44:445–9, S441.
Wolff D, Endele S, Azzarello-Burri S, et al. In-frame deletion and missense mutations of the C-Terminal Helicase Domain of SMARCA2 in three patients with Nicolaides–Baraitser syndrome. Mol Syndromol. 2012;2:237–244. PubMed PMC
Borlot F, Regan BM, Bassett AS, Stavropoulos DJ, Andrade DM. Prevalence of pathogenic copy number variation in adults with pediatric-onset epilepsy and intellectual disability. JAMA Neurol. 2017;74:1301–1311. PubMed PMC
Sekiguchi F, Tsurusaki Y, Okamoto N, et al. Genetic abnormalities in a large cohort of Coffin–Siris syndrome patients. J Hum Genet. 2019;64:1173–1186. PubMed PMC
Santen GW, Kriek M, van Attikum H. SWI/SNF complex in disorder: switching from malignancies to intellectual disability. Epigenetics. 2012;7:1219–1224. PubMed PMC
Bramswig NC, Ludecke HJ, Alanay Y, et al. Exome sequencing unravels unexpected differential diagnoses in individuals with the tentative diagnosis of Coffin–Siris and Nicolaides–Baraitser syndromes. Hum Genet. 2015;134:553–568. PubMed PMC
Ejaz R, Babul-Hirji R, Chitayat D. The evolving features of Nicolaides–Baraitser syndrome—a clinical report of a 20-year follow-up. Clin Case Rep. 2016;4:351–355. PubMed PMC
Tang S, Hughes E, Lascelles K, Euro ERESmaewg, Simpson MA, Pal DK. New SMARCA2 mutation in a patient with Nicolaides–Baraitser syndrome and myoclonic astatic epilepsy. Am J Med Genet A. 2017;173:195–199. PubMed PMC
Gripp KW, Baker L, Telegrafi A, Monaghan KG. The role of objective facial analysis using FDNA in making diagnoses following whole exome analysis. Report of two patients with mutations in the BAF complex genes. Am J Med Genet A. 2016;170:1754–1762. PubMed PMC
Wieczorek D, Bogershausen N, Beleggia F, et al. A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum Mol Genet. 2013;22:5121–5135. PubMed PMC
Sanchez AI, Rojas JA. A SMARCA2 mutation in the first case report of Nicolaides–Baraitser syndrome in Latin America: genotype-phenotype correlation. Case Rep Genet. 2017;2017:8639617. PubMed PMC
Tsurusaki Y, Okamoto N, Ohashi H, et al. Mutations affecting components of the SWI/SNF complex cause Coffin–Siris syndrome. Nat Genet. 2012;44:376–378. PubMed PMC
Santen GW, Aten E, Vulto-van Silfhout AT, et al. Coffin–Siris syndrome and the BAF complex: genotype–phenotype study in 63 patients. Hum Mutat. 2013;34:1519–1528.
Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, et al. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev. 2019;41:776–782.
Mari F, Marozza A, Mencarelli MA, et al. Coffin–Siris and Nicolaides–Baraitser syndromes are a common well recognizable cause of intellectual disability. Brain Dev. 2015;37:527–536.
Kosho T, Okamoto N, Ohashi H, et al. Clinical correlations of mutations affecting six components of the SWI/SNF complex: detailed description of 21 patients and a review of the literature. Am J Med Genet A. 2013;161A:1221–1237.
Aref-Eshghi E, Bend EG, Hood RL, et al. BAFopathies’ DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin–Siris and Nicolaides–Baraitser syndromes. Nat Commun. 2018;9:4885. PubMed PMC
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36:928–930. PubMed PMC
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424. PubMed PMC
Shaw WM, Yamauchi H, Mead J, et al. Engineering a model cell for rational tuning of GPCR signaling. Cell. 2019;177:782–96. e727. PubMed PMC
Gurovich Y, Hanani Y, Bar O, et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat Med. 2019;25:60–64.
Li M, Xia X, Tian Y, et al. Mechanism of DNA translocation underlying chromatin remodelling by Snf2. Nature. 2019;567:409–413. PubMed PMC
Mashtalir N, D’Avino AR, Michel BC, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175:1272–88. e1220. PubMed PMC
Schubert HL, Wittmeyer J, Kasten MM, et al. Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Proc Natl Acad Sci U S A. 2013;110:3345–3350. PubMed PMC
Han Y, Reyes AA, Malik S, He Y. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature. 2020;579:452–455. PubMed PMC
Neigeborn L, Carlson M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics. 1984;108:845–858. PubMed PMC
Minard LV, Lin LJ, Schultz MC. SWI/SNF and Asf1 independently promote derepression of the DNA damage response genes under conditions of replication stress. PLoS ONE. 2011;6:e21633. PubMed PMC
Chater-Diehl E, Ejaz R, Cytrynbaum C, et al. New insights into DNA methylation signatures: SMARCA2 variants in Nicolaides–Baraitser syndrome. BMC Med Genomics. 2019;12:105. PubMed PMC
van der Sluijs PJ, Jansen S, Vergano SA, et al. The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin–Siris syndrome. Genet Med. 2019;21:1295–1307. PubMed PMC
Krawitz P, Buske O, Zhu N, Brudno M, Robinson PN. The genomic birthday paradox: how much is enough? Hum Mutat. 2015;36:989–997. PubMed PMC
Hoischen A, Krumm N, Eichler EE. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci. 2014;17:764–772. PubMed PMC
Lee H, Deignan JL, Dorrani N, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880–1887. PubMed PMC
Vandeweyer G, Helsmoortel C, Van Dijck A, et al. The transcriptional regulator ADNP links the BAF (SWI/SNF) complexes with autism. Am J Med Genet C Semin Med Genet. 2014;166C:315–326.
Takenouchi T, Miwa T, Sakamoto Y, et al. Further evidence that a blepharophimosis syndrome phenotype is associated with a specific class of mutation in the ADNP gene. Am J Med Genet A. 2017;173:1631–1634.
Mandel S, Gozes I. Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex. J Biol Chem. 2007;282:34448–34456.