16S rRNA molecular profiling of heavy metal tolerant bacterial communities isolated from soil contaminated by electronic waste

. 2020 Dec ; 65 (6) : 995-1007. [epub] 20200721

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32696197

Grantová podpora
F1-17.1/2014-15/RGNF-201415-SC-UTT-69661 University Grants Commission

Odkazy

PubMed 32696197
DOI 10.1007/s12223-020-00808-2
PII: 10.1007/s12223-020-00808-2
Knihovny.cz E-zdroje

Electronic waste is an evolving source of harmful pollutants in our surrounding environments and considered to be perilous as it contains toxic metals such as chromium, cadmium, lead, mercury, zinc, and nickel in huge quantities. Heavy metals are harmful contaminants and accumulated in the environment due to various anthropogenic activities. The present study was conducted to isolate and characterize different heavy metal tolerant bacterial species, based on molecular techniques from soil contaminated by electronic waste. The contaminated soil samples were analyzed for various physicochemical properties such as pH, electrical conductivity, soil moisture, water holding capacity, organic carbon, organic matter, available phosphorus, total nitrogen, and potassium using standard procedures. The soil samples were found to contain a higher amount of different heavy metals such as copper, chromium, lead, iron, cadmium, and nickel. Serial dilution and spread plate techniques have been used for bacterial isolation. The identification and molecular characterization of isolated bacterial species were done by biochemical tests and 16S rRNA gene sequencing technique. The 16S rRNA sequencing analysis confirmed the presence of different bacterial species as, Micrococcus aloeverae, Kocuria turfanensis, Bacillus licheniformis, Bacillus jeotgali, Bacillus velezensis, and Bacillus haikouensis. The findings indicated that the e-waste dumping sites are the storehouse of elite bacterial species. The present research study offers a platform for systematic analysis of e-waste sites by microbial profiling that may help in the innovation of novel microorganisms of scientific importance and better biotechnological potential.

Zobrazit více v PubMed

Baker GC, Gaffar S, Cowan DA, Suharto AR (2001) Bacterial community analysis of Indonesian hot springs. FEMS Microbiol Lett 200:103–109. https://doi.org/10.1111/j.1574-6968.2001.tb10700.x PubMed DOI

Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100 DOI

Bhattacharya A, Khare SK (2016) Sustainable options for mitigation of major toxicants originating from electronic waste. Curr Sci 111:1946–1954. https://doi.org/10.18520/cs/v111/i12/1946-1954 DOI

Birbir M, Calli B, Mertoglu B, Bardavid RE, Oren A, Ogmen MN, Ogan A (2007) Extremely halophilic Archaea from Tuz Lake, Turkey, and the adjacent Kaldirim and Kayacik salterns. World J Microbiol Biotechnol 23:309–316. https://doi.org/10.1007/s11274-006-9223-4 DOI

Borriss R, Makarewicz O, Idriss EE, Farouk A, Rosner K, Greiner R, Bochow H, Richter T (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109. https://doi.org/10.1099/00221287-148-7-2097 PubMed DOI

Borriss R, Chen X, Rueckert C, Blom J, Becker A, Baumgarth B, Fan B, Pukall R, Schumann P, Spröer C, Junge H, Vater J, Pühler A, Klenk HP (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7 T and FZB42 T : a proposal for Bacillus amyloliquefaciens subsp . amyloliquefaciens subsp . nov . and Bacillus based on complete genome sequence comparisons. Int J Syst Evol Microbiol 61:1786–1801. https://doi.org/10.1099/ijs.0.023267-0 PubMed DOI

Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia (Jena) 49:637–644. https://doi.org/10.1016/j.pedobi.2005.06.003 DOI

Calugaru IL, Neculita CM, Genty T, Bussiere B, Potvin R (2016) Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. J Hazard Mater 310:48–55. https://doi.org/10.1016/j.jhazmat.2016.01.069 PubMed DOI

Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Pearson Education Inc., San Francisco, pp 15–224

Chittpurna, Singh PK, Verma D, Pinnaka AK, Mayilraj S, Korpole S (2011) Micrococcus lactis sp. nov., isolated from dairy industry waste. Int J Syst Evol Microbiol 61:2832–2836. https://doi.org/10.1099/ijs.0.028043-0 PubMed DOI

Chuku E (2004) Some Environmental Effect on Seed Rot of Irvingia gabonensis var . gabonensis (ugiri). Niger Delta Biol 4:72–74

Das D, Kalra I, Mani K, Salgaonkar BB, Braganca JM (2019) Characterization of extremely halophilic archaeal isolates from Indian salt pans and their screening for production of hydrolytic enzymes. Environ Sustain 2:227–239. https://doi.org/10.1007/s42398-019-00077-x DOI

Duan H, Eugster M, Hischier R, Streicher-Porte M, Li J (2009) Life cycle assessment study of a Chinese desktop personal computer. Sci Total Environ 407:1755–1764. https://doi.org/10.1016/j.scitotenv.2008.10.063 PubMed DOI

Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. Plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenom. Int J Syst Evol Microbiol 66:1212–1217. https://doi.org/10.1099/ijsem.0.000858 PubMed DOI

Duxbury T, Bicknell B (1983) Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol Biochem 15:243–250. https://doi.org/10.1016/0038-0717(83)90066-4 DOI

Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275. https://doi.org/10.1016/j.tim.2008.03.004 PubMed DOI PMC

Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/10.1073/pnas.0507535103 PubMed DOI PMC

Fritze D (2004) Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming Bacteria. Phytopathology 94:1245–1248. https://doi.org/10.1094/PHYTO.2004.94.11.1245 PubMed DOI

Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187:201. https://doi.org/10.1007/s10661-015-4436-3 PubMed DOI

Gayatri Y, Shailaja RM (2016) Molecular characterization of Bacteria isolated from E-waste dumping yards at Hyderabad, Telangana, India. Eur J Exp Biol 6:1–5

Geethanjali P, Hena JV, Growther L (2016) Isolation and identification of Bacteria from E-waste contaminated soil and the presence of heavy metal. Int J Curr Res Acad Rev 4:52–55. https://doi.org/10.20546/ijcrar.2016.411.008 DOI

Gordon RE, Haynes WC, Pang CH-N, Smith NR (1973) The genus Bacillus

Havlin JL, Tisdale SL, Nelson WL, Beaton JD (2004) Soil fertility and fertilizers: An introduction to nutrient management, 7th edn. MacMillan Publishing Co., New Delhi

Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman ÅL, Bruné MN, Buka I, Carpenter DO, Chen A, Huo X, Kamel M, Landrigan PJ, Magalini F, Diaz-Barriga F, Neira M, Omar M, Pascale A, Ruchirawat M, Sly L, Sly PD, Van den Berg M, Suk WA (2016) E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect 124:550–555. https://doi.org/10.1289/ehp.1509699 PubMed DOI

Hiroki M (1992) Effects of heavy metal contamination on soil microbial population. Soil Sci Plant Nutr 38:141–147. https://doi.org/10.1080/00380768.1992.10416961 DOI

Hoffmann JE (1992) Recovering precious metals from electronic scrap. JOM 44:43–48. https://doi.org/10.1007/BF03222275 DOI

Jansen E, Michels M, van Til M, Doelman P (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soils 17:177–184. https://doi.org/10.1007/BF00336319 DOI

Jiang Y, Yves UJ, Sun H, Hu X, Zhan H, Wu Y (2016) Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicol Environ Saf 126:154–162. https://doi.org/10.1016/j.ecoenv.2015.12.037 PubMed DOI

Jonas RB (1989) Acute copper and cupric ion toxicity in an estuarine microbial community. Appl Environ Microbiol 55:43–49 DOI

Kandi V, Palange P, Vaish R, Bhatti AB, Kale V, Kandi MR, Bhoomagiri MR (2016) Emerging bacterial infection: identification and clinical significance of Kocuria species. Cureus 8:e731–e731. https://doi.org/10.7759/cureus.731 PubMed DOI PMC

Kiddee P, Naidu R, Wong MH (2013) Metals and polybrominated diphenyl ethers leaching from electronic waste in simulated landfills. J Hazard Mater 252–253:243–249. https://doi.org/10.1016/j.jhazmat.2013.03.015 PubMed DOI

Kloos WE, Tornabene TG, Schleifer KH (2009) Isolation and characterization of Micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. Int J Syst Bacteriol 24:79–101. https://doi.org/10.1099/00207713-24-1-79 DOI

Kovar J, Pierzynski G (2009) Methods of phosphorus analysis for soils, sediments, residuals, and waters second edition. South coop Ser bull 408 south Ext res act

Krave AS, Lin B, Braster M, Laverman AM, van Straalen NM, Röling WF, van Verseveld HW (2002) Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in Central Java, Indonesia. Environ Microbiol 4:361–373. https://doi.org/10.1046/j.1462-2920.2002.00304.x PubMed DOI

Kumar P (2018) Electronic waste - hazards, management and available green technologies for remediation - a review. Int Res J Environ Sci 7:57–68

Kumar P, Fulekar MH (2017) Assessment of physico chemical, microbial characteristics and heavy metals contamination at e-waste dumping sites at Ahmedabad, Gujarat. Int J Adv Res 5:1601–1609. https://doi.org/10.21474/ijar01/4577 DOI

Kumar P, Fulekar MH (2018) Rhizosphere bioremediation of heavy metals (copper and Lead) by Cenchrus ciliaris. Res J Environ Sci 12:166–176. https://doi.org/10.3923/rjes.2018.166.176 DOI

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 DOI

Kumar P, Kumar R, Reddy MV (2017) Assessment of sewage treatment plant effluent and its impact on the surface water and sediment quality of river ganga at Kanpur. Int J Sci Eng Res 8:1315–1324. https://doi.org/10.14299/ijser.2018.01.003 DOI

Lasat M (2002) Phytoextraction of toxic metals:a review of biological mechanisms. J Environ Qual 31:109–120 PubMed

Lee C, Kim J, Shin SG, O'Flaherty V, Hwang S (2010) Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater. Appl Microbiol Biotechnol 87:1963–1973. https://doi.org/10.1007/s00253-010-2685-1 PubMed DOI

Leung A, Cai ZW, Wong MH (2006) Environmental contamination from electronic waste recycling at Guiyu, Southeast China. J Mater Cycles Waste Manag 8:21–33. https://doi.org/10.1007/s10163-005-0141-6 DOI

Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H (2006) Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in cu, Zn, and cd-contaminated paddy soils. Chemosphere 62:1374–1380. https://doi.org/10.1016/j.chemosphere.2005.07.050 PubMed DOI

Liu H, Xu Y, Ma Y, Zhou P (2000) Characterization of Micrococcus antarcticus sp. nov., a psychrophilic bacterium from Antarctica. Int J Syst Evol Microbiol 50:715–719. https://doi.org/10.1099/00207713-50-2-715 PubMed DOI

Liu XY, Wang BJ, Jiang CY, Liu SJ (2007) Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 57:66–69. https://doi.org/10.1099/ijs.0.64489-0 PubMed DOI

Liu J, He X, Lin X, Chen WC, Zhou QX, Shu WS, Huang LN (2015) Ecological effects of combined pollution associated with E-waste recycling on the composition and diversity of soil microbial communities. Environ Sci Technol 49:6438–6447. https://doi.org/10.1021/es5049804 PubMed DOI

Lu C, Zhang L, Zhong Y, Ren W, Tobias M, Mu Z, Ma Z, Geng Y, Xue B (2015) An overview of e-waste management in China. J Mater Cycles Waste Manag 17:1–12. https://doi.org/10.1007/s10163-014-0256-8 DOI

Mahajan S, Billore D (2014) Assessment of physico-chemical characteristics of the soil of Nagchoon pond Khandwa, MP, India. Res J Chem Sci 4:26–30

Mani K, Salgaonkar BB, Braganca JM (2012) Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8:15. https://doi.org/10.1186/2046-9063-8-15 PubMed DOI PMC

McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214. https://doi.org/10.1023/A:1010358708525 DOI

Muhammad A, Xu J, Li Z, Wang H, Yao H (2005) Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60:508–514. https://doi.org/10.1016/j.chemosphere.2005.01.001 PubMed DOI

Nagaraja N, Desai NB, Jayanna HS (2014) A Comparative Study on the Physico-Chemical Parameters of the Soils of Chitradurga District, Karnataka. Indian JSciRes 5:23–28

Nath TN (2013) Heavy Metals and Its Impact on Tea Cultivated Soil and Tea Leaf in Sivasagar District of Assam, India. Int J Adv Res 1:561–567

Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. https://doi.org/10.1038/333134a0 PubMed DOI

Osuji LC, Adesiyan SO (2005) The Isiokpo oil-pipeline leakage: Total organic carbon/organic matter contents of affected soils. Chem Biodivers 2:1079–1085. https://doi.org/10.1002/cbdv.200590077 PubMed DOI

Pakzad HR, Pasandi M, Yeganeh S, Alizadeh Ketek Lahijani H (2016) Assessment of heavy metal enrichment in the offshore fine-grained sediments of the Caspian Sea. Environ Monit Assess 188:303. https://doi.org/10.1007/s10661-016-5302-7 PubMed DOI

Rai PK, Lee SS, Zhang M, Tsang YF, Kim K (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385. https://doi.org/10.1016/j.envint.2019.01.067 PubMed DOI

Renella G, Mench M, Landi L, Nannipieri P (2005) Microbial activity and hydrolase synthesis in long-term cd-contaminated soils. Soil Biol Biochem 37:133–139. https://doi.org/10.1016/j.soilbio.2004.06.015 DOI

Reva ON, Dixelius C, Meijer J, Priest FG (2004) Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol Ecol 48:249–259. https://doi.org/10.1016/j.femsec.2004.02.003 PubMed DOI

Rieser G, Scherer S, Wenning M (2013) Micrococcus cohnii sp. nov., isolated from the air in a medical practice. Int J Syst Evol Microbiol 63:80–85. https://doi.org/10.1099/ijs.0.036434-0 PubMed DOI

Robinson BH (2009) E-waste: An assessment of global production and environmental impacts. Sci Total Environ 408:183–191. https://doi.org/10.1016/j.scitotenv.2009.09.044 PubMed DOI

Shentu J, He Z, Yang X, Li T (2008) Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time. J Zhejiang Univ Sci B 9:250–260. https://doi.org/10.1631/jzus.B0710630 PubMed DOI PMC

Singh RP, Mishra SK (2012) Available Macro Nutrients (N, P, K, and S) in the Soils of Chiraigaon Block of District Varanasi ( U . P .) in Relation To Soil Characteristics. Indian J Sci Res 3:97–100

Singh S, Chaudhary IJ, Kumar P (2019) Utilization of low-cost agricultural waste for removal of toxic metals from environment: a review. Int J Sci Res Bio Sci 6(4):56–61. https://doi.org/10.26438/ijsrbs/v6i4.5661 DOI

Song L, Wang Y, Tang W, Lei Y (2015) Bacterial community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99:7745–7756. https://doi.org/10.1007/s00253-015-6633-y PubMed DOI

Stackebrandt E, Koch C, Gvozdiak O, Schumann P (2009) Taxonomic dissection of the genus Micrococcus: Kocuria gen. Nov., Nesterenkonia gen. Nov., Kytococcus gen. Nov., Dermacoccus gen. Nov., and Micrococcus Cohn 1872 gen. Emend. Int J Syst Bacteriol 45:682–692. https://doi.org/10.1099/00207713-45-4-682 DOI

Suhadolc M, Schroll R, Gattinger A, Schloter M, Munch JC, Lesten D (2004) Effects of modified Pb-, Zn-, and cd- availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Biol Biochem 36:1943–1954. https://doi.org/10.1016/j.soilbio.2004.05.015 DOI

Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023 DOI

Tang X, Qiao J, Chen C, Chen L, Yu C, Shen C, Chen Y (2013) Bacterial communities of polychlorinated biphenyls polluted soil around an E-waste recycling workshop. Soil Sediment Contam 22:562–573. https://doi.org/10.1080/15320383.2013.750269 DOI

U.S. Environmental Protection Agency (2012) Statistics on the Management of Used and End-of-Life Electronics

Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846. https://doi.org/10.1016/S0038-0717(00)00157-7 DOI

Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81. https://doi.org/10.1016/j.ecoenv.2006.03.007 PubMed DOI

Wang F, Huisman J, Stevels A, Baldé CP (2013) Enhancing e-waste estimates: improving data quality by multivariate input–output analysis. Waste Manag 33:2397–2407. https://doi.org/10.1016/j.wasman.2013.07.005 PubMed DOI

Wieser M, Denner EB, Kämpfer P, Schumann P, Tindall B, Steiner U, Vybiral D, Lubitz W, Maszenan AM, Patel BK, Seviour RJ, Radax C, Busse HJ (2002) Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol 52:629–637. https://doi.org/10.1099/00207713-52-2-629 PubMed DOI

Woermann D (1973) R. G. bates: determination of pH, theory and practice. 2nd edition, John Wiley & sons, New York, London, Sydney, Toronto 1973. 479 Seiten. Preis: £ 10.00. Ber Bunsenges Phys Chem 77:737–737. https://doi.org/10.1002/BBPC.19730770918 DOI

Wu Q, Leung JYS, Geng X, Chen S, Huang X, Li H, Huang Z, Zhu L, Chen J, Lu Y (2015) Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci Total Environ 506–507:217–225. https://doi.org/10.1016/j.scitotenv.2014.10.121 PubMed DOI

Wu Q, Du Y, Huang Z, Gu J, Leung JYS, Mai B, Xiao T, Liu W, Fu J (2019) Vertical profile of soil/sediment pollution and microbial community change by e-waste recycling operation. Sci Total Environ 669:1001–1010. https://doi.org/10.1016/j.scitotenv.2019.03.178 PubMed DOI

Zhang JY, Liu XY, Liu SJ (2010a) Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60:1897–1903. https://doi.org/10.1099/ijs.0.013235-0 PubMed DOI

Zhang W, Wang H, Zhang R, Yu XZ, Qian PY, Wong MH (2010b) Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology 19:96–104. https://doi.org/10.1007/s10646-009-0393-3 PubMed DOI

Zhang W, Zhang M, An S, Lin K, Li H, Cui C, Fu R, Zhu J (2012) The combined effect of decabromodiphenyl ether (BDE-209) and copper (cu) on soil enzyme activities and microbial community structure. Environ Toxicol Pharmacol 34:358–369. https://doi.org/10.1016/j.etap.2012.05.009 PubMed DOI

Zhao GZ, Li J, Qin S, Zhang YQ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383–2387. https://doi.org/10.1099/ijs.0.010256-0 PubMed DOI

Zhu W, Liu L, Zou P, Xiao L, Yang L (2010) Effect of decabromodiphenyl ether (BDE 209) on soil microbial activity and bacterial community composition. World J Microbiol Biotechnol 26:1891–1899. https://doi.org/10.1007/s11274-010-0371-1 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...