16S rRNA molecular profiling of heavy metal tolerant bacterial communities isolated from soil contaminated by electronic waste
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
F1-17.1/2014-15/RGNF-201415-SC-UTT-69661
University Grants Commission
PubMed
32696197
DOI
10.1007/s12223-020-00808-2
PII: 10.1007/s12223-020-00808-2
Knihovny.cz E-zdroje
- Klíčová slova
- 16S rRNA gene sequencing, Electronic waste, Heavy metals, Microbial diversity, Phylogenetic tree analysis,
- MeSH
- Bacteria klasifikace účinky léků genetika izolace a purifikace MeSH
- DNA bakterií MeSH
- elektronický odpad analýza MeSH
- genom bakteriální MeSH
- látky znečišťující půdu analýza MeSH
- monitorování životního prostředí MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- těžké kovy toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- látky znečišťující půdu MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
- těžké kovy MeSH
Electronic waste is an evolving source of harmful pollutants in our surrounding environments and considered to be perilous as it contains toxic metals such as chromium, cadmium, lead, mercury, zinc, and nickel in huge quantities. Heavy metals are harmful contaminants and accumulated in the environment due to various anthropogenic activities. The present study was conducted to isolate and characterize different heavy metal tolerant bacterial species, based on molecular techniques from soil contaminated by electronic waste. The contaminated soil samples were analyzed for various physicochemical properties such as pH, electrical conductivity, soil moisture, water holding capacity, organic carbon, organic matter, available phosphorus, total nitrogen, and potassium using standard procedures. The soil samples were found to contain a higher amount of different heavy metals such as copper, chromium, lead, iron, cadmium, and nickel. Serial dilution and spread plate techniques have been used for bacterial isolation. The identification and molecular characterization of isolated bacterial species were done by biochemical tests and 16S rRNA gene sequencing technique. The 16S rRNA sequencing analysis confirmed the presence of different bacterial species as, Micrococcus aloeverae, Kocuria turfanensis, Bacillus licheniformis, Bacillus jeotgali, Bacillus velezensis, and Bacillus haikouensis. The findings indicated that the e-waste dumping sites are the storehouse of elite bacterial species. The present research study offers a platform for systematic analysis of e-waste sites by microbial profiling that may help in the innovation of novel microorganisms of scientific importance and better biotechnological potential.
Zobrazit více v PubMed
Baker GC, Gaffar S, Cowan DA, Suharto AR (2001) Bacterial community analysis of Indonesian hot springs. FEMS Microbiol Lett 200:103–109. https://doi.org/10.1111/j.1574-6968.2001.tb10700.x PubMed DOI
Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100 DOI
Bhattacharya A, Khare SK (2016) Sustainable options for mitigation of major toxicants originating from electronic waste. Curr Sci 111:1946–1954. https://doi.org/10.18520/cs/v111/i12/1946-1954 DOI
Birbir M, Calli B, Mertoglu B, Bardavid RE, Oren A, Ogmen MN, Ogan A (2007) Extremely halophilic Archaea from Tuz Lake, Turkey, and the adjacent Kaldirim and Kayacik salterns. World J Microbiol Biotechnol 23:309–316. https://doi.org/10.1007/s11274-006-9223-4 DOI
Borriss R, Makarewicz O, Idriss EE, Farouk A, Rosner K, Greiner R, Bochow H, Richter T (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109. https://doi.org/10.1099/00221287-148-7-2097 PubMed DOI
Borriss R, Chen X, Rueckert C, Blom J, Becker A, Baumgarth B, Fan B, Pukall R, Schumann P, Spröer C, Junge H, Vater J, Pühler A, Klenk HP (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7 T and FZB42 T : a proposal for Bacillus amyloliquefaciens subsp . amyloliquefaciens subsp . nov . and Bacillus based on complete genome sequence comparisons. Int J Syst Evol Microbiol 61:1786–1801. https://doi.org/10.1099/ijs.0.023267-0 PubMed DOI
Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia (Jena) 49:637–644. https://doi.org/10.1016/j.pedobi.2005.06.003 DOI
Calugaru IL, Neculita CM, Genty T, Bussiere B, Potvin R (2016) Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. J Hazard Mater 310:48–55. https://doi.org/10.1016/j.jhazmat.2016.01.069 PubMed DOI
Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Pearson Education Inc., San Francisco, pp 15–224
Chittpurna, Singh PK, Verma D, Pinnaka AK, Mayilraj S, Korpole S (2011) Micrococcus lactis sp. nov., isolated from dairy industry waste. Int J Syst Evol Microbiol 61:2832–2836. https://doi.org/10.1099/ijs.0.028043-0 PubMed DOI
Chuku E (2004) Some Environmental Effect on Seed Rot of Irvingia gabonensis var . gabonensis (ugiri). Niger Delta Biol 4:72–74
Das D, Kalra I, Mani K, Salgaonkar BB, Braganca JM (2019) Characterization of extremely halophilic archaeal isolates from Indian salt pans and their screening for production of hydrolytic enzymes. Environ Sustain 2:227–239. https://doi.org/10.1007/s42398-019-00077-x DOI
Duan H, Eugster M, Hischier R, Streicher-Porte M, Li J (2009) Life cycle assessment study of a Chinese desktop personal computer. Sci Total Environ 407:1755–1764. https://doi.org/10.1016/j.scitotenv.2008.10.063 PubMed DOI
Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. Plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenom. Int J Syst Evol Microbiol 66:1212–1217. https://doi.org/10.1099/ijsem.0.000858 PubMed DOI
Duxbury T, Bicknell B (1983) Metal-tolerant bacterial populations from natural and metal-polluted soils. Soil Biol Biochem 15:243–250. https://doi.org/10.1016/0038-0717(83)90066-4 DOI
Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275. https://doi.org/10.1016/j.tim.2008.03.004 PubMed DOI PMC
Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/10.1073/pnas.0507535103 PubMed DOI PMC
Fritze D (2004) Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming Bacteria. Phytopathology 94:1245–1248. https://doi.org/10.1094/PHYTO.2004.94.11.1245 PubMed DOI
Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187:201. https://doi.org/10.1007/s10661-015-4436-3 PubMed DOI
Gayatri Y, Shailaja RM (2016) Molecular characterization of Bacteria isolated from E-waste dumping yards at Hyderabad, Telangana, India. Eur J Exp Biol 6:1–5
Geethanjali P, Hena JV, Growther L (2016) Isolation and identification of Bacteria from E-waste contaminated soil and the presence of heavy metal. Int J Curr Res Acad Rev 4:52–55. https://doi.org/10.20546/ijcrar.2016.411.008 DOI
Gordon RE, Haynes WC, Pang CH-N, Smith NR (1973) The genus Bacillus
Havlin JL, Tisdale SL, Nelson WL, Beaton JD (2004) Soil fertility and fertilizers: An introduction to nutrient management, 7th edn. MacMillan Publishing Co., New Delhi
Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman ÅL, Bruné MN, Buka I, Carpenter DO, Chen A, Huo X, Kamel M, Landrigan PJ, Magalini F, Diaz-Barriga F, Neira M, Omar M, Pascale A, Ruchirawat M, Sly L, Sly PD, Van den Berg M, Suk WA (2016) E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect 124:550–555. https://doi.org/10.1289/ehp.1509699 PubMed DOI
Hiroki M (1992) Effects of heavy metal contamination on soil microbial population. Soil Sci Plant Nutr 38:141–147. https://doi.org/10.1080/00380768.1992.10416961 DOI
Hoffmann JE (1992) Recovering precious metals from electronic scrap. JOM 44:43–48. https://doi.org/10.1007/BF03222275 DOI
Jansen E, Michels M, van Til M, Doelman P (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soils 17:177–184. https://doi.org/10.1007/BF00336319 DOI
Jiang Y, Yves UJ, Sun H, Hu X, Zhan H, Wu Y (2016) Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicol Environ Saf 126:154–162. https://doi.org/10.1016/j.ecoenv.2015.12.037 PubMed DOI
Jonas RB (1989) Acute copper and cupric ion toxicity in an estuarine microbial community. Appl Environ Microbiol 55:43–49 DOI
Kandi V, Palange P, Vaish R, Bhatti AB, Kale V, Kandi MR, Bhoomagiri MR (2016) Emerging bacterial infection: identification and clinical significance of Kocuria species. Cureus 8:e731–e731. https://doi.org/10.7759/cureus.731 PubMed DOI PMC
Kiddee P, Naidu R, Wong MH (2013) Metals and polybrominated diphenyl ethers leaching from electronic waste in simulated landfills. J Hazard Mater 252–253:243–249. https://doi.org/10.1016/j.jhazmat.2013.03.015 PubMed DOI
Kloos WE, Tornabene TG, Schleifer KH (2009) Isolation and characterization of Micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. Int J Syst Bacteriol 24:79–101. https://doi.org/10.1099/00207713-24-1-79 DOI
Kovar J, Pierzynski G (2009) Methods of phosphorus analysis for soils, sediments, residuals, and waters second edition. South coop Ser bull 408 south Ext res act
Krave AS, Lin B, Braster M, Laverman AM, van Straalen NM, Röling WF, van Verseveld HW (2002) Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in Central Java, Indonesia. Environ Microbiol 4:361–373. https://doi.org/10.1046/j.1462-2920.2002.00304.x PubMed DOI
Kumar P (2018) Electronic waste - hazards, management and available green technologies for remediation - a review. Int Res J Environ Sci 7:57–68
Kumar P, Fulekar MH (2017) Assessment of physico chemical, microbial characteristics and heavy metals contamination at e-waste dumping sites at Ahmedabad, Gujarat. Int J Adv Res 5:1601–1609. https://doi.org/10.21474/ijar01/4577 DOI
Kumar P, Fulekar MH (2018) Rhizosphere bioremediation of heavy metals (copper and Lead) by Cenchrus ciliaris. Res J Environ Sci 12:166–176. https://doi.org/10.3923/rjes.2018.166.176 DOI
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 DOI
Kumar P, Kumar R, Reddy MV (2017) Assessment of sewage treatment plant effluent and its impact on the surface water and sediment quality of river ganga at Kanpur. Int J Sci Eng Res 8:1315–1324. https://doi.org/10.14299/ijser.2018.01.003 DOI
Lasat M (2002) Phytoextraction of toxic metals:a review of biological mechanisms. J Environ Qual 31:109–120 PubMed
Lee C, Kim J, Shin SG, O'Flaherty V, Hwang S (2010) Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater. Appl Microbiol Biotechnol 87:1963–1973. https://doi.org/10.1007/s00253-010-2685-1 PubMed DOI
Leung A, Cai ZW, Wong MH (2006) Environmental contamination from electronic waste recycling at Guiyu, Southeast China. J Mater Cycles Waste Manag 8:21–33. https://doi.org/10.1007/s10163-005-0141-6 DOI
Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H (2006) Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in cu, Zn, and cd-contaminated paddy soils. Chemosphere 62:1374–1380. https://doi.org/10.1016/j.chemosphere.2005.07.050 PubMed DOI
Liu H, Xu Y, Ma Y, Zhou P (2000) Characterization of Micrococcus antarcticus sp. nov., a psychrophilic bacterium from Antarctica. Int J Syst Evol Microbiol 50:715–719. https://doi.org/10.1099/00207713-50-2-715 PubMed DOI
Liu XY, Wang BJ, Jiang CY, Liu SJ (2007) Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 57:66–69. https://doi.org/10.1099/ijs.0.64489-0 PubMed DOI
Liu J, He X, Lin X, Chen WC, Zhou QX, Shu WS, Huang LN (2015) Ecological effects of combined pollution associated with E-waste recycling on the composition and diversity of soil microbial communities. Environ Sci Technol 49:6438–6447. https://doi.org/10.1021/es5049804 PubMed DOI
Lu C, Zhang L, Zhong Y, Ren W, Tobias M, Mu Z, Ma Z, Geng Y, Xue B (2015) An overview of e-waste management in China. J Mater Cycles Waste Manag 17:1–12. https://doi.org/10.1007/s10163-014-0256-8 DOI
Mahajan S, Billore D (2014) Assessment of physico-chemical characteristics of the soil of Nagchoon pond Khandwa, MP, India. Res J Chem Sci 4:26–30
Mani K, Salgaonkar BB, Braganca JM (2012) Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8:15. https://doi.org/10.1186/2046-9063-8-15 PubMed DOI PMC
McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214. https://doi.org/10.1023/A:1010358708525 DOI
Muhammad A, Xu J, Li Z, Wang H, Yao H (2005) Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60:508–514. https://doi.org/10.1016/j.chemosphere.2005.01.001 PubMed DOI
Nagaraja N, Desai NB, Jayanna HS (2014) A Comparative Study on the Physico-Chemical Parameters of the Soils of Chitradurga District, Karnataka. Indian JSciRes 5:23–28
Nath TN (2013) Heavy Metals and Its Impact on Tea Cultivated Soil and Tea Leaf in Sivasagar District of Assam, India. Int J Adv Res 1:561–567
Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. https://doi.org/10.1038/333134a0 PubMed DOI
Osuji LC, Adesiyan SO (2005) The Isiokpo oil-pipeline leakage: Total organic carbon/organic matter contents of affected soils. Chem Biodivers 2:1079–1085. https://doi.org/10.1002/cbdv.200590077 PubMed DOI
Pakzad HR, Pasandi M, Yeganeh S, Alizadeh Ketek Lahijani H (2016) Assessment of heavy metal enrichment in the offshore fine-grained sediments of the Caspian Sea. Environ Monit Assess 188:303. https://doi.org/10.1007/s10661-016-5302-7 PubMed DOI
Rai PK, Lee SS, Zhang M, Tsang YF, Kim K (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385. https://doi.org/10.1016/j.envint.2019.01.067 PubMed DOI
Renella G, Mench M, Landi L, Nannipieri P (2005) Microbial activity and hydrolase synthesis in long-term cd-contaminated soils. Soil Biol Biochem 37:133–139. https://doi.org/10.1016/j.soilbio.2004.06.015 DOI
Reva ON, Dixelius C, Meijer J, Priest FG (2004) Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol Ecol 48:249–259. https://doi.org/10.1016/j.femsec.2004.02.003 PubMed DOI
Rieser G, Scherer S, Wenning M (2013) Micrococcus cohnii sp. nov., isolated from the air in a medical practice. Int J Syst Evol Microbiol 63:80–85. https://doi.org/10.1099/ijs.0.036434-0 PubMed DOI
Robinson BH (2009) E-waste: An assessment of global production and environmental impacts. Sci Total Environ 408:183–191. https://doi.org/10.1016/j.scitotenv.2009.09.044 PubMed DOI
Shentu J, He Z, Yang X, Li T (2008) Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time. J Zhejiang Univ Sci B 9:250–260. https://doi.org/10.1631/jzus.B0710630 PubMed DOI PMC
Singh RP, Mishra SK (2012) Available Macro Nutrients (N, P, K, and S) in the Soils of Chiraigaon Block of District Varanasi ( U . P .) in Relation To Soil Characteristics. Indian J Sci Res 3:97–100
Singh S, Chaudhary IJ, Kumar P (2019) Utilization of low-cost agricultural waste for removal of toxic metals from environment: a review. Int J Sci Res Bio Sci 6(4):56–61. https://doi.org/10.26438/ijsrbs/v6i4.5661 DOI
Song L, Wang Y, Tang W, Lei Y (2015) Bacterial community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99:7745–7756. https://doi.org/10.1007/s00253-015-6633-y PubMed DOI
Stackebrandt E, Koch C, Gvozdiak O, Schumann P (2009) Taxonomic dissection of the genus Micrococcus: Kocuria gen. Nov., Nesterenkonia gen. Nov., Kytococcus gen. Nov., Dermacoccus gen. Nov., and Micrococcus Cohn 1872 gen. Emend. Int J Syst Bacteriol 45:682–692. https://doi.org/10.1099/00207713-45-4-682 DOI
Suhadolc M, Schroll R, Gattinger A, Schloter M, Munch JC, Lesten D (2004) Effects of modified Pb-, Zn-, and cd- availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Biol Biochem 36:1943–1954. https://doi.org/10.1016/j.soilbio.2004.05.015 DOI
Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023 DOI
Tang X, Qiao J, Chen C, Chen L, Yu C, Shen C, Chen Y (2013) Bacterial communities of polychlorinated biphenyls polluted soil around an E-waste recycling workshop. Soil Sediment Contam 22:562–573. https://doi.org/10.1080/15320383.2013.750269 DOI
U.S. Environmental Protection Agency (2012) Statistics on the Management of Used and End-of-Life Electronics
Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846. https://doi.org/10.1016/S0038-0717(00)00157-7 DOI
Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81. https://doi.org/10.1016/j.ecoenv.2006.03.007 PubMed DOI
Wang F, Huisman J, Stevels A, Baldé CP (2013) Enhancing e-waste estimates: improving data quality by multivariate input–output analysis. Waste Manag 33:2397–2407. https://doi.org/10.1016/j.wasman.2013.07.005 PubMed DOI
Wieser M, Denner EB, Kämpfer P, Schumann P, Tindall B, Steiner U, Vybiral D, Lubitz W, Maszenan AM, Patel BK, Seviour RJ, Radax C, Busse HJ (2002) Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol 52:629–637. https://doi.org/10.1099/00207713-52-2-629 PubMed DOI
Woermann D (1973) R. G. bates: determination of pH, theory and practice. 2nd edition, John Wiley & sons, New York, London, Sydney, Toronto 1973. 479 Seiten. Preis: £ 10.00. Ber Bunsenges Phys Chem 77:737–737. https://doi.org/10.1002/BBPC.19730770918 DOI
Wu Q, Leung JYS, Geng X, Chen S, Huang X, Li H, Huang Z, Zhu L, Chen J, Lu Y (2015) Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci Total Environ 506–507:217–225. https://doi.org/10.1016/j.scitotenv.2014.10.121 PubMed DOI
Wu Q, Du Y, Huang Z, Gu J, Leung JYS, Mai B, Xiao T, Liu W, Fu J (2019) Vertical profile of soil/sediment pollution and microbial community change by e-waste recycling operation. Sci Total Environ 669:1001–1010. https://doi.org/10.1016/j.scitotenv.2019.03.178 PubMed DOI
Zhang JY, Liu XY, Liu SJ (2010a) Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60:1897–1903. https://doi.org/10.1099/ijs.0.013235-0 PubMed DOI
Zhang W, Wang H, Zhang R, Yu XZ, Qian PY, Wong MH (2010b) Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology 19:96–104. https://doi.org/10.1007/s10646-009-0393-3 PubMed DOI
Zhang W, Zhang M, An S, Lin K, Li H, Cui C, Fu R, Zhu J (2012) The combined effect of decabromodiphenyl ether (BDE-209) and copper (cu) on soil enzyme activities and microbial community structure. Environ Toxicol Pharmacol 34:358–369. https://doi.org/10.1016/j.etap.2012.05.009 PubMed DOI
Zhao GZ, Li J, Qin S, Zhang YQ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383–2387. https://doi.org/10.1099/ijs.0.010256-0 PubMed DOI
Zhu W, Liu L, Zou P, Xiao L, Yang L (2010) Effect of decabromodiphenyl ether (BDE 209) on soil microbial activity and bacterial community composition. World J Microbiol Biotechnol 26:1891–1899. https://doi.org/10.1007/s11274-010-0371-1 DOI