Testing the Analytical Rumination Hypothesis: Exploring the Longitudinal Effects of Problem Solving Analysis on Depression
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32714239
PubMed Central
PMC7344354
DOI
10.3389/fpsyg.2020.01344
Knihovny.cz E-zdroje
- Klíčová slova
- analysis, analytical rumination hypothesis, depression, evolution, problem-solving,
- Publikační typ
- časopisecké články MeSH
Depression is a mental health condition for which individuals commonly seek treatment. However, depressive episodes often resolve on their own, even without treatment. One evolutionary perspective, the analytical rumination hypothesis (ARH), suggests that depression occurs in response to complex problems. According to this perspective, depressive symptoms promote analytical rumination, i.e., distraction-resistant thoughts about the causes of problems [causal analysis (CA)] and how they can be solved [problem-solving analysis (PSA)]. By helping individuals solve complex problems, analytical rumination may contribute to remission from depression. The aim of this study was to investigate (1) whether clinically-depressed individuals have more complex problems and engage in more CA and PSA than non-depressed and (2) the effects of CA and PSA on decreases in problem complexity, depressive symptoms, and remission from the depression. Samples of 85 patients were treated for depression with antidepressants and psychotherapy, and 49 healthy subjects were assessed three times over a 4-month period (at Weeks 1, 5, and 16). At each assessment, they completed measures of depression, analytical rumination, and problem complexity. Depressed individuals reported having more complex problems and engaging in more CA than non-depressed participants. The two groups engaged in a similar degree of PSA. Findings from a multiple regression suggested that more PSA at Week 1 was related to a decrease in depressive symptoms at Week 5, even after controlling for baseline depression, problem number, and complexity. PSA at Week 1 did not predict the remission after hospitalization or at follow-up; however, having less complex problems at the baseline made it more likely that a patient would later remit. Engaging in more CA or PSA at Week 1 did not affect perceived problem complexity at Week 5 or at follow-up. However, these findings were not statistically significant when influential observations (or outliers) were included in the analysis. Our findings suggest that PSA may contribute to a decrease in symptoms of depression over time. However, alleviations in problem complexity and remission might only be achieved if problems are initially less complex. Future directions involve exploring how PSA might contribute to decreases in depressive symptoms and other mechanisms underlying remission from depression.
1st Faculty of Medicine Charles University Prague Czechia
3rd Faculty of Medicine Charles University Prague Czechia
Department of Psychology Faculty of Education Charles University Prague Czechia
Department of Psychology Neuroscience and Behaviour McMaster University Hamilton ON Canada
Krembil Centre for Neuroinformatics Centre for Addiction and Mental Health Toronto ON Canada
Zobrazit více v PubMed
Abramson L. Y., Metalsky G. I., Alloy L. B. (1989). Hopelessness depression: a theory-based subtype of depression. Psychol. Rev. 96, 358–372. 10.1037/0033-295X.96.2.358 DOI
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders. 5th Edn. Arlington, VA: American Psychiatric Association.
Andrews P. W., Thomson J. A. (2009). The bright side of being blue: depression as an adaptation for analyzing complex problems. Psychol. Rev. 116, 620–654. 10.1037/a0016242, PMID: PubMed DOI PMC
Barbic S. P., Durisko Z., Andrews P. W. (2014). Measuring the bright side of being blue: a new tool for assessing analytical rumination in depression. PLoS One 9:e112077. 10.1371/journal.pone.0112077, PMID: PubMed DOI PMC
Bartoskova M., Sevcikova M., Durisko Z., Maslej M. M., Barbic S. P., Preiss M., et al. (2018). The form and function of depressive rumination. Evol. Hum. Behav. 39, 277–289. 10.1016/j.evolhumbehav.2018.01.005 DOI
Beck A. T. (1976). Cognitive therapy and the emotional disorders. New York: Int. Univ Press.
Bell A. C., D᾽Zurilla T. J. (2009). Problem-solving therapy for depression: a meta-analysis. Clin. Psychol. Rev. 29, 348–353. 10.1016/j.cpr.2009.02.003, PMID: PubMed DOI
Biancosino B., Marmai L., Borsari B., Padovani S., Magri V., Bertasi R., et al. . (2009). Patient opinions on the experiences of psychiatric hospitalization: a qualitative study. Riv. Psichiatr. 44, 122–133. PMID: PubMed
Cook R. D. (1977). Detection of influential observation in linear regression. Technometrics 19, 15–18. 10.2307/1268249 DOI
Cousineau D. (2005). Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method. Tutor. Quant. Methods Psychol. 1, 42–45. 10.20982/tqmp.01.1.p042 DOI
Cristobal E., Flavian C., Guinaliu M. (2007). Perceived e-service quality (PeSQ) measurement validation and effects on consumer satisfaction and web site loyalty. J. Serv. Theory Pract. 17, 317–340. 10.1108/09604520710744326 DOI
Cuijpers P., de Wit L., Kleiboer A., Karyotaki E., Ebert D. D. (2018). Problem-solving therapy for adult depression: an updated meta-analysis. Eur. Psychiatry 48, 27–37. 10.1016/j.eurpsy.2017.11.006, PMID: PubMed DOI
du Pont A., Karbin Z., Rhee S. H., Corley R. P., Hewitt J. K., Friedman N. P. (2020). Differential associations between rumination and intelligence subtypes. Intelligence 78:101420. 10.1016/j.intell.2019.101420 PubMed DOI PMC
Durisko Z., Mulsant B. H., Andrews P. W. (2015). An adaptationist perspective on the etiology of depression. J. Affect. Disord. 172, 315–323. 10.1016/j.jad.2014.09.032, PMID: PubMed DOI
Durisko Z., Mulsant B. H., McKenzie K., Andrews P. W. (2016). Using evolutionary theory to guide mental health research. Can. J. Psychiatr. 61, 159–165. 10.1177/0706743716632517, PMID: PubMed DOI PMC
Fleagle J. G. (2013). “Adaptation, evolution, and systematics” in Primate adaptation and evolution. 3rd Edn. Academic press. 1–7.
Fox J., Friendly G. G., Graves S., Heiberger R., Monette G., Nilsson H., et al. (2007). The car package. R Foundation for Statistical Computing.
Friedrich M. J. (2017). Depression is the leading cause of disability around the world. JAMA 317, 1517–1517. 10.1001/jama.2017.3828, PMID: PubMed DOI
George D., Mallery P. (2003). SPSS for windows step by step: A simple guide and reference. 11.0 update. 4th Edn. Boston: Allyn & Bacon.
Gotlib I. H., Joormann J. (2010). Cognition and depression: current status and future directions. Annu. Rev. Clin. Psychol. 6, 285–312. 10.1146/annurev.clinpsy.121208.131305, PMID: PubMed DOI PMC
Haaga D. A., Dyck M. J., Ernst D. (1991). Empirical status of cognitive theory of depression. Psychol. Bull. 110, 215–236. 10.1037/0033-2909.110.2.215, PMID: PubMed DOI
Hagen E. H. (2011). Evolutionary theories of depression: a critical review. Can. J. Psychiatr. 56, 716–726. 10.1177/070674371105601203, PMID: PubMed DOI
Haley J. (1987). Problem-solving therapy. San Francisco, CA: Jossey-Bass.
Hardeveld F., Spijker J., De Graaf R., Nolen W. A., Beekman A. T. F. (2010). Prevalence and predictors of recurrence of major depressive disorder in the adult population. Acta Psychiatr. Scand. 122, 184–191. 10.1111/j.1600-0447.2009.01519.x, PMID: PubMed DOI
Hektner J. M., Schmidt J. A., Csikszentmihalyi M. (2007). Experience sampling method: Measuring the quality of everyday life. London: Sage.
Hermens M. L., Adèr H. J., van Hout H. P., Terluin B., van Dyck R., de Haan M. (2006). Administering the MADRS by telephone or face-to-face: a validity study. Ann. General Psychiatry 5:3. 10.1186/1744-859X-5-3, PMID: PubMed DOI PMC
Hidaka B. H. (2012). Depression as a disease of modernity: explanations for increasing prevalence. J. Affect. Disord. 140, 205–214. 10.1016/j.jad.2011.12.036, PMID: PubMed DOI PMC
Hothorn T., Hornik K., van de Wiel M. A., Zeileis A. (2008). Implementing a class of permutation tests: the coin package. J. Stat. Softw. 28, 1–23. 10.18637/jss.v028.i08 PubMed DOI
Keller M. C., Neale M. C., Kendler K. S. (2007). Association of different adverse life events with distinct patterns of depressive symptoms. Am. J. Psychiatry 164, 1521–1529. 10.1176/appi.ajp.2007.06091564, PMID: PubMed DOI
Keller M. C., Nesse R. M. (2006). The evolutionary significance of depressive symptoms: different adverse situations lead to different depressive symptom patterns. J. Pers. Soc. Psychol. 91, 316–330. 10.1037/0022-3514.91.2.316, PMID: PubMed DOI
Krogsbøll L. T., Hróbjartsson A., Gøtzsche P. C. (2009). Spontaneous improvement in randomised clinical trials: meta-analysis of three-armed trials comparing no treatment, placebo and active intervention. BMC Med. Res. Methodol. 9:1. 10.1186/1471-2288-9-1 PubMed DOI PMC
Lee R. S., Hermens D. F., Porter M. A., Redoblado-Hodge M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. J. Affect. Disord. 140, 113–124. 10.1016/j.jad.2011.10.023, PMID: PubMed DOI
Levenson R. W. (1999). The intrapersonal functions of emotion. Cognit. Emot. 13, 481–504. 10.1080/026999399379159 DOI
Lewinsohn P. M., Joiner T. E., Jr., Rohde P. (2001). Evaluation of cognitive diathesis-stress models in predicting major depressive disorder in adolescents. J. Abnorm. Psychol. 110, 203–215. 10.1037/0021-843X.110.2.203, PMID: PubMed DOI
Liu Q., He H., Yang J., Feng X., Zhao F., Lyu J. (2019). Changes in the global burden of depression from 1990 to 2017: findings from the Global Burden of Disease study. J. Psychiatr. Res. 126, 134–140. 10.1016/j.jpsychires.2019.08.002, PMID: PubMed DOI
Lyubomirsky S., Nolen-Hoeksema S. (1993). Self-perpetuating properties of dysphoric rumination. J. Pers. Soc. Psychol. 65, 339–349. 10.1037/0022-3514.65.2.339, PMID: PubMed DOI
Lyubomirsky S., Nolen-Hoeksema S. (1995). Effects of self-focused rumination on negative thinking and interpersonal problem solving. J. Pers. Soc. Psychol. 69, 176–190. 10.1037/0022-3514.69.1.176, PMID: PubMed DOI
Maslej M., Rheaume A. R., Schmidt L. A., Andrews P. W. (2019). Using expressive writing to test an evolutionary hypothesis about depressive rumination: sadness coincides with causal analysis of a personal problem, not problem-solving analysis. Evol. Psychol. Sci. 6, 1–17. 10.1007/s40806-019-00219-8 DOI
Moberly N. J., Watkins E. R. (2008). Ruminative self-focus, negative life events, and negative affect. Behav. Res. Therapy 46, 1034–1039. 10.1016/j.brat.2008.06.004, PMID: PubMed DOI PMC
Montgomery S. A., Åsberg M. (1979). A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134, 382–389. 10.1192/bjp.134.4.382, PMID: PubMed DOI
Nesse R. M. (1990). Evolutionary explanations of emotions. Hum. Nat. 1, 261–289. 10.1007/BF02733986, PMID: PubMed DOI
Nesse R. M. (2000). Is depression an adaptation? Arch. Gen. Psychiatry 57, 14–20. 10.1001/archpsyc.57.1.14, PMID: PubMed DOI
Nettle D. (2004). Evolutionary origins of depression: a review and reformulation. J. Affect. Disord. 81, 91–102. 10.1016/j.jad.2003.08.009, PMID: PubMed DOI
Nolen-Hoeksema S. (1991). Responses to depression and their effects on the duration of depressive episodes. J. Abnorm. Psychol. 100, 569–582. 10.1037/0021-843X.100.4.569, PMID: PubMed DOI
Nolen-Hoeksema S., Wisco B. E., Lyubomirsky S. (2008). Rethinking rumination. Perspect. Psychol. Sci. 3, 400–424. 10.1111/j.1745-6924.2008.00088.x, PMID: PubMed DOI
Open Science Framework (2020a). Testing the ARH_Data. Available at: https://mfr.ca-1.osf.io/render?url=https://osf.io/7f2jn/?direct%26mode=render%26action=download%26mode=render (Accessed April 20, 2020).
Open Science Framework (2020b). Testing the ARH_Study code. Available at: https://mfr.ca-1.osf.io/render?url=https://osf.io/jsv2k/?direct%26mode=render%26action=download%26mode=render (Accessed May 9, 2020).
Penney A. M., Miedema V. C., Mazmanian D. (2015). Intelligence and emotional disorders: is the worrying and ruminating mind a more intelligent mind? Pers. Individ. Differ. 74, 90–93. 10.1016/j.paid.2014.10.005 DOI
Posternak M. A., Miller I. (2001). Untreated short-term course of major depression: a meta-analysis of outcomes from studies using wait-list control groups. J. Affect. Disord. 66, 139–146. 10.1016/S0165-0327(00)00304-9, PMID: PubMed DOI
Ripley B., Venables B., Bates D. M., Hornik K., Gebhardt A., Firth D., et al. (2013). Package ‘mass’. Cran R 538.
Rock P. L., Roiser J. P., Riedel W. J., Blackwell A. D. (2014). Cognitive impairment in depression: a systematic review and meta-analysis. Psychol. Med. 44, 2029–2040. 10.1017/S0033291713002535, PMID: PubMed DOI
Saragoussi D., Touya M., Haro J. M., Jönsson B., Knapp M., Botrel B., et al. . (2017). Factors associated with failure to achieve remission and with relapse after remission in patients with major depressive disorder in the PERFORM study. Neuropsychiatr. Dis. Treat. 13, 2151–2165. 10.2147/NDT.S136343, PMID: PubMed DOI PMC
Sheehan D. V., Lecrubier Y., Sheehan K. H., Janavs J., Weiller E., Keskiner A., et al. (1997). The MINI International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur. Psychiatry 12, 232–241. 10.1016/S0924-9338(97)83297-X DOI
Skinner E. A., Edge K., Altman J., Sherwood H. (2003). Searching for the structure of coping: a review and critique of category systems for classifying ways of coping. Psychol. Bull. 129, 216–219. 10.1037/0033-2909.129.2.216, PMID: PubMed DOI
Treynor W., Gonzalez R., Nolen-Hoeksema S. (2003). Rumination reconsidered: a psychometric analysis. Cognit. Ther. Res. 27, 247–259. 10.1023/A:1023910315561 PubMed DOI
Vitriol V., Cancino A., Serrano C., Ballesteros S., Potthoff S. (2018). Remission in depression and associated factors at different assessment times in primary care in Chile. Clin. Prac. Epidemiol. Ment. Health 14, 78–88. 10.2174/1745017901814010078, PMID: PubMed DOI PMC
Whiteford H. A., Harris M. G., McKeon G., Baxter A., Pennell C., Barendregt J. J., et al. . (2013). Estimating remission from untreated major depression: a systematic review and meta-analysis. Psychol. Med. 43, 1569–1585. 10.1017/S0033291712001717, PMID: PubMed DOI
World Health Organization (2017). Depression and other common mental disorders: global health estimates (No. WHO/MSD/MER/2017.2). World Health Organization.
Wu Z., Fang Y. (2014). Comorbidity of depressive and anxiety disorders: challenges in diagnosis and assessment. Shanghai Arch. Psychiatry 26, 227–231. 10.3969/j.issn.1002-0829.2014.04.006, PMID: PubMed DOI PMC
Zimmerman M., Posternak M. A., Chelminski I. (2004). Derivation of a definition of remission on the Montgomery–Asberg depression rating scale corresponding to the definition of remission on the Hamilton rating scale for depression. J. Psychiatr. Res. 38, 577–582. 10.1016/j.jpsychires.2004.03.007, PMID: PubMed DOI