Warm temperatures increase population growth of a nonnative defoliator and inhibit demographic responses by parasitoids

. 2020 Nov ; 101 (11) : e03156. [epub] 20200902

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid32740922

Grantová podpora
MIN-17-095 Minnesota Agricultural Experiment Station
CZ.02.1.01/0.0/0.0/16_019/0000803 Czech Operational Programme "Science, Research, and Education"
1638702 National Science Foundation Macrosystems Biology
15-DG-1142004-237 USDA Forest Service

Changes in thermal regimes that disparately affect hosts and parasitoids could release hosts from biological control. When multiple natural enemy species share a host, shifts in host-parasitoid dynamics could depend on whether natural enemies interact antagonistically vs. synergistically. We investigated how biotic and abiotic factors influence the population ecology of larch casebearer (Coleophora laricella), a nonnative pest, and two imported parasitoids, Agathis pumila and Chrysocharis laricinellae, by analyzing (1) temporal dynamics in defoliation from 1962 to 2018, and (2) historical, branch-level data on densities of larch casebearer and parasitism rates by the two imported natural enemies from 1972 to 1995. Analyses of defoliation indicated that, prior to the widespread establishment of parasitoids (1962 to ~1980), larch casebearer outbreaks occurred in 2-6 yr cycles. This pattern was followed by a >15-yr period during which populations were at low, apparently stable densities undetectable via aerial surveys, presumably under control from parasitoids. However, since the late 1990s and despite the persistence of both parasitoids, outbreaks exhibiting unstable dynamics have occurred. Analyses of branch-level data indicated that growth of casebearer populations, A. pumila populations, and within-casebearer densities of C. laricinellae-a generalist whose population dynamics are likely also influenced by use of alternative hosts-were inhibited by density dependence, with high intraspecific densities in one year slowing growth into the next. Casebearer population growth was also inhibited by parasitism from A. pumila, but not C. laricinellae, and increased with warmer autumnal temperatures. Growth of A. pumila populations and within-casebearer densities of C. laricinellae increased with casebearer densities but decreased with warmer annual maximum temperatures. Moreover, parasitism by A. pumila was associated with increased growth of within-casebearer densities of C. laricinellae without adverse effects on its own demographics, indicating a synergistic interaction between these parasitoids. Our results indicate that warming can be associated with opposing effects between trophic levels, with deleterious effects of warming on one natural enemy species potentially being exacerbated by similar impacts on another. Coupling of such parasitoid responses with positive responses of hosts to warming might have contributed to the return of casebearer outbreaks to North America.

Zobrazit více v PubMed

Aukema, B. H., F. R. McKee, D. L. Wytrykush, and A. L. Carroll. 2016. Population dynamics and epidemiology of four species of Dendroctonus (Coleoptera: Curculionidae): 100 years since J.M. Swaine. The Canadian Entomologist 148:S82-S110.

Bale, J. S., et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8:1-16.

Barton, B. T., and A. R. Ives. 2014a. Species interactions and a chain of indirect effects driven by reduced precipitation. Ecology 95:486-494.

Barton, B. T., and A. R. Ives. 2014b. Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology 95:1479-1484.

Bates, D., M. Mächler, B. M. Bolker, and S. C. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1-48.

Berryman, A. A. 1991. Population theory: an essential ingredient in pest prediction, management, and policy-making. American Entomologist 37:138-142.

Berryman, A. A. 1996. What causes population cycles of forest Lepidoptera? Trends in Ecology & Evolution 11:28-32.

Berryman, A. A. 2003. On principles, laws and theory in population ecology. Oikos 103:695-701.

Bivand, R., T. Keitt, and B. Rowlingson. 2019. rgdal: Bindings for the “Geospatial” data abstraction library. R package version 1.4-8. https://CRAN.R-project.org/package=rgdal

Bjørnstad, O. N.2020. ncf: spatial covariance functions. R package version 1.2-9. https://CRAN.R-project.org/package=ncf

Bjørnstad, O. N., and W. Falck. 2001. Nonparametric spatial covariance functions: estimation and testing. Environmental and Ecological Statistics 8:53-70.

Büntgen, U., et al. 2020. Return of the moth: rethinking the effect of climate on insect outbreaks. Oecologia 192:543-552.

Castex, V., M. Beniston, P. Calanca, D. Fleury, and J. Moreau. 2018. Pest management under climate change: the importance of understanding tritrophic relations. Science of the Total Environment 616-617:397-407.

Cazelles, B., M. Chavez, D. Berteaux, F. Ménard, J. O. Vik, S. Jenouvrier, and N. C. Stenseth. 2008. Wavelet analysis of ecological time series. Oecologia 156:287-304.

Cornulier, T., et al. 2013. Europe-wide dampening of population cycles in keystone herbivores. Science 340:63-66.

Denoth, M., L. Frid, and J. H. Myers. 2002. Multiple agents in biological control: improving the odds? Biological Control 24:20-30.

Ehler, L. E., and R. W. Hall. 1982. Evidence for competitive exclusion of introduced natural enemies in biological control. Environmental Entomology 11:1-4.

Farge, M. 1992. Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics 24:395-458.

Goldson, S. L., et al. 2014. If and when successful classical biological control fails. Biological Control 72:76-79.

Gouhier, T. C., A. Grinsted, and V. Simko. 2019. R package biwavelet: conduct univariate and bivariate wavelet analyses (version 0.20.19). https://github.com/tgouhier/biwavelet

Graham, A. R.1948. Developments in the control of the larch casebearer, Coleophora laricella (Hbn.). Pages 45-50 in 79th Annual Report of the Entomogical Society of Ontario.

Grenfell, B. T., O. N. Bjørnstad, and J. Kappey. 2001. Travelling waves and spatial hierarchies in measles epidemics. Nature 414:716-723.

Hance, T., J. van Baaren, P. Vernon, and G. Boivin. 2007. Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 52:107-126.

Harrington, R., R. A. Fleming, and I. P. Woiwod. 2001. Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agricultural and Forest Entomology 3:233-240.

Harrington, R., I. Woiwod, and T. Sparks. 1999. Climate change and trophic interactions. Trends in Ecology & Evolution 14:146-150.

Havill, N. P., and K. F. Raffa. 2000. Compound effects of induced plant responses on insect herbivores and parasitoids: implications for tritrophic interactions. Ecological Entomology 25:171-179.

Higgins, K., A. Hastings, J. N. Sarvela, and L. W. Botsford. 1997. Stochastic dynamics and deterministic skeletons: population behavior of Dungeness crab. Science 276:1431-1435.

Hijmans, R. J. 2019. geosphere: Spherical Trigonometry. R package version 1.5-10. https://CRAN.R-project.org/package=geosphere

Hijmans, R. J. 2020. raster: geographic data analysis and modeling. R package version 3.1-5. https://CRAN.R-project.org/package=raster

Hijmans, R. J., S. Phillips, J. Leathwick, and J. Elith. 2017. dismo: species distribution modeling. R package version 1.1-4. https://CRAN.R-project.org/package=dismo

Ims, R. A., J.-A. Henden, and S. T. Killengreen. 2008. Collapsing population cycles. Trends in Ecology & Evolution 23:79-86.

Ismail, A. B., and G. E. Long. 1982. Interactions among parasites of the larch casebearer (Lepidoptera: Coleophoridae) in northern Idaho. Environmental Entomology 11:1242-1247.

Jamieson, M. A., A. M. Trowbridge, K. F. Raffa, and R. L. Lindroth. 2012. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiology 160:1719-1727.

Jeffs, C. T., and O. T. Lewis. 2013. Effects of climate warming on host-parasitoid interactions. Ecological Entomology 38:209-218.

Johnson, D. M., U. Büntgen, D. C. Frank, K. Kausrud, K. J. Haynes, A. M. Liebhold, J. Esper, and N. C. Stenseth. 2010. Climatic warming disrupts recurrent Alpine insect outbreaks. Proceedings of the National Academy of Sciences of the United States of America 107:20576-20581.

Kenis, M., B. P. Hurley, A. E. Hajek, and M. J. W. Cock. 2017. Classical biological control of insect pests of trees: facts and figures. Biological Invasions 19:3401-3417.

Kidd, D., and P. Amarasekare. 2012. The role of transient dynamics in biological pest control: insights from a host-parasitoid community. Journal of Animal Ecology 81:47-57.

Klapwijk, M. J., J. A. Walter, A. Hirka, G. Csóka, C. Björkman, and A. M. Liebhold. 2018. Transient synchrony among populations of five foliage-feeding Lepidoptera. Journal of Animal Ecology 87:1058-1068.

Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. lmerTest: tests in linear mixed effects models. Journal of Statistical Software 82:1-26.

Lantschner, M. V., J. M. Villacide, J. R. Garnas, P. Croft, A. J. Carnegie, A. M. Liebhold, and J. C. Corley. 2014. Temperature explains variable spread rates of the invasive woodwasp Sirex noctilio in the Southern Hemisphere. Biological Invasions 16:329-339.

Lei, G., and I. Hanski. 1998. Spatial dynamics of two competing specialist parasitoids in a host metapopulation. Journal of Animal Ecology 67:422-433.

Li, Z., M. Gao, C. Hui, X. Han, and H. Shi. 2005. Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation. Ecological Modelling 185:245-254.

Liebhold, A., W. D. Koenig, and O. N. Bjørnstad. 2004. Spatial synchrony in population dynamics. Annual Review of Ecology, Evolution and Systematics 35:467-490.

May, R. M., and M. P. Hassell. 1981. The dynamics of multiparasitoid-host interactions. American Naturalist 117:234-261.

Meisner, M. H., J. P. Harmon, and A. R. Ives. 2014. Temperature effects on long-term population dynamics in a parasitoid-host system. Ecological Monographs 84:457-476.

Miller-Pierce, M., D. C. Shaw, A. Demarco, and P. T. Oester. 2015. Introduced and native parasitoid wasps associated with larch casebearer (Lepidoptera: Coleophoridae) in western larch. Environmental Entomology 44:27-33.

Muldrew, J. A. 1953. The natural immunity of the larch sawfly (Pristiphora erichsonii Htg.) to the introduced parasite Mesoleius tenthredinis Morley, in Manitoba and Saskatchewan. Canadian Journal of Zoology 31:313-332.

Murdoch, W. W., J. Chesson, and P. L. Chesson. 1985. Biological control in theory and practice. American Naturalist 125:344-366.

Ode, P. J., M. R. Berenbaum, A. R. Zangerl, and I. C. W. Hardy. 2004. Host plant, host plant chemistry and the polyembryonic parasitoid Copidosoma sosares: indirect effects in a tritrophic interaction. Oikos 104:388-400.

Otvos, I. S., and F. W. Quednau. 1981. Coleophora laricella (Hübner), larch casebearer (Lepidoptera: Coleophoridae). Pages 281-284 in J. S. Kelleher and M. A. Hulme, editors. Biological control programmes against insects and weeds in Canada, 1969-1980. Commonwealth Agricultural Bureau, London, UK.

PRISM. 2019. PRISM Climate Group, Oregon State University. http://prism.oregonstate.edu

Pschorn-Walcher, H. 1977. Biological control of forest insects. Annual Review of Entomology 22:1-22.

Quednau, F. 1967a. Ecological observations on Chrysocharis laricinellae (Hymenoptera: Eulophidae), a parasite of the larch casebearer (Coleophora laricella). The Canadian Entomologist 99:631-641.

Quednau, F. 1967b. Notes on mating behavior and oviposition of Chrysocharis laricinellae (Hymenoptera: Eulophidae), a parasite of the larch casebearer (Coleophora laricella). The Canadian Entomologist 99:326-331.

Quednau, F. 1970a. Notes on life-history, fecundity, longevity, and attack pattern of Agathis pumila (Hymenoptera: Braconidae), a parasite of the larch casebearer. The Canadian Entomologist 102:736-745.

Quednau, F. W. 1970b. Competition and co-operation between Chrysocharis laricinellae and Agathis pumila on larch casebearer in Quebec. The Canadian Entomologist 102:602-612.

R Development Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rosenheim, J. A. 1998. Higher-order predators and the regulation of insect herbivore populations. Annual Review of Entomology 43:421-447.

Rosenheim, J. A., H. K. Kaya, L. E. Ehler, J. J. Marois, and B. A. Jaffee. 1995. Intraguild predation among biological-control agents: theory and evidence. Biological Control 5:303-335.

Ryan, R. 1983. Population density and dynamics of larch casebearer (Lepidoptera: Coleophoridae) in the Blue Mountains of Oregon and Washington before the build-up of exotic parasites. The Canadian Entomologist 115:1095-1102.

Ryan, R. B. 1986. Analysis of life tables for the larch casebearer (Lepidoptera: Coleophoridae) in Oregon. The Canadian Entomologist 118:1255-1263.

Ryan, R. B. 1990. Evaluation of biological control: introduced parasites of larch casebearer (Lepidoptera: Coleophoridae) in Oregon. Environmental Entomology 19:1873-1881.

Ryan, R. B. 1997. Before and after evaluation of biological control of the larch casebearer (Lepidoptera: Coleophoridae) in the Blue Mountains of Oregon and Washington, 1972-1995. Environmental Entomology 26:703-715.

Ryan, R. B., S. Tunnock, and F. W. Ebel. 1987. The larch casebearer in North America. Journal of Forestry 85:33-39.

Schooler, S. S., P. De Barro, and A. R. Ives. 2011. The potential for hyperparasitism to compromise biological control: why don’t hyperparasitoids drive their primary parasitoid hosts extinct? Biological Control 58:167-173.

Simberloff, D., and P. Stiling. 1996. How risky is biological control? Ecology 77:1965-1974.

Snyder, W. E., and A. R. Ives. 2003. Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol. Ecology 84:91-107.

Stiling, P., and T. Cornelissen. 2005. What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biological Control 34:236-246.

Torrence, C., and G. P. Compo. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79:61-78.

Uszko, W., S. Diehl, G. Englund, and P. Amarasekare. 2017. Effects of warming on predator-prey interactions-a resource-based approach and a theoretical synthesis. Ecology Letters 20:513-523.

Van der Putten, W. H., M. Macel, and M. E. Visser. 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B 365:2025-2034.

Vogel, G. 2017. Where have all the insects gone? Science 356:576-579.

Voigt, W., et al. 2003. Trophic levels are differentially sensitive to climate. Ecology 84:2444-2453.

Walter, J. A., M. S. Meixler, T. Mueller, W. F. Fagan, P. C. Tobin, and K. J. Haynes. 2015. How topography induces reproductive asynchrony and alters gypsy moth invasion dynamics. Journal of Animal Ecology 84:188-198.

Ward, S. F., and B. H. Aukema. 2019a. Anomalous outbreaks of an invasive defoliator and native bark beetle facilitated by warm temperatures, changes in precipitation and interspecific interactions. Ecography 42:1068-1078.

Ward, S. F., and B. H. Aukema. 2019b. Climatic synchrony and increased outbreaks in allopatric populations of an invasive defoliator. Biological Invasions 21:685-691.

Ward, S. F., E. L. Eidson, A. M. Kees, R. C. Venette, and B. H. Aukema. 2020. Allopatric populations of the invasive larch casebearer differ in cold tolerance and phenology. Ecological Entomology 45:56-66.

Ward, S. F., R. D. Moon, and B. H. Aukema. 2019a. Implications of seasonal and annual heat accumulation for population dynamics of an invasive defoliator. Oecologia 190:703-714.

Ward, S. F., R. D. Moon, D. A. Herms, and B. H. Aukema. 2019b. Determinants and consequences of plant-insect phenological synchrony for a non-native herbivore on a deciduous conifer: implications for invasion success. Oecologia 190:867-878.

Webb, F. E., and F. W. Quednau. 1971. Chapter 38-Coleophora laricella (Hübner), larch casebearer (Lepidoptera: Coleophoridae). In Biological control programmes against insects and weeds in Canada, 1959-1968. Technical Communication No. 4:131-136. Commonwealth Institute of Biological Control, Commonwealth Agricultural Bureaux, Farnham Royal, UK.

Weed, A. S., M. P. Ayres, A. M. Liebhold, and R. F. Billings. 2017. Spatio-temporal dynamics of a tree-killing beetle and its predator. Ecography 40:221-234.

Wickham, H., et al. 2019. Welcome to the Tidyverse. Journal of Open Source Software 4:1686.

Williams, C. K., A. R. Ives, R. D. Applegate, and J. Ripa. 2004. The collapse of cycles in the dynamics of North American grouse populations. Ecology Letters 7:1135-1142.

Zavala, J. A., C. L. Casteel, E. H. DeLucia, and M. R. Berenbaum. 2008. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proceedings of the National Academy of Sciences of the United States of America 105:5129-5133.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...