The Na⋅⋅⋅B Bond in NaBH3 - : A Different Type of Bond
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32757234
DOI
10.1002/anie.202010024
Knihovny.cz E-zdroje
- Klíčová slova
- bond analysis, covalent bonds, electrostatic interactions, quantum chemistry, sodium,
- Publikační typ
- časopisecké články MeSH
A newly introduced Na-B bond in NaBH3 - has been a challenge for the chemical bonding community. Here, a series of MBH3 - (M=Li, Na, K) species and NaB(CN)3 - are studied within the context of quantum chemical topology approaches. The analyses suggest that M-B interaction cannot be classified as an ordinary covalent, dative, or even simple ionic interaction. The interactions are controlled by coulombic forces between the metals and the substituents on boron, for example, H or CN, more than the direct M-B interaction. On the other hand, while the characteristics of the (3, -1) critical points of the bonds are comparable to weak hydrogen bonds, not covalent bonds, the metal and boron share a substantial sum of electrons. To the best of the author's knowledge, the characteristics of these bonds are unprecedented among known molecules. Considering all paradoxical properties of these bonds, they are herein described as ionic-enforced covalent bonds.
Zobrazit více v PubMed
S. H. Bauer, J. Am. Chem. Soc. 1937, 59, 1096-1103.
S. H. Bauer, Chem. Rev. 1942, 31, 43-75.
A. N. Alexandrova, A. I. Boldyrev, H.-J. Zhai, L.-S. Wang, Coord. Chem. Rev. 2006, 250, 2811-2866.
D. Y. Zubarev, A. I. Boldyrev, J. Comput. Chem. 2007, 28, 251-268.
W. Huang, A. P. Sergeeva, H.-J. Zhai, B. B. Averkiev, L.-S. Wang, A. I. Boldyrev, Nat. Chem. 2010, 2, 202-206.
E. Osorio, J. K. Olson, W. Tiznado, A. I. Boldyrev, Chem. Eur. J. 2012, 18, 9677-9681.
C. Romanescu, T. R. Galeev, W.-L. Li, A. I. Boldyrev, L.-S. Wang, Acc. Chem. Res. 2013, 46, 350-358.
A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W.-L. Li, C. Romanescu, L.-S. Wang, A. I. Boldyrev, Acc. Chem. Res. 2014, 47, 1349-1358.
I. A. Popov, A. I. Boldyrev in Boron: The Fifth Element (Eds.: D. Hnyk, M. McKee), Springer International Publishing, Cham, 2015, pp. 1-16.
J. Czekner, L. F. Cheung, G. S. Kocheril, M. Kulichenko, A. I. Boldyrev, L.-S. Wang, Angew. Chem. Int. Ed. 2019, 58, 8877-8881;
Angew. Chem. 2019, 131, 8969-8973.
T. Jian, X. Chen, S.-D. Li, A. I. Boldyrev, J. Li, L.-S. Wang, Chem. Soc. Rev. 2019, 48, 3550-3591.
N. Fedik, C. Mu, I. A. Popov, W. Wang, J. Wang, H. Wang, K. H. Bowen, A. I. Boldyrev, X. Zhang, Chem. Eur. J. 2020, 26, 8017-8021.
G. Liu, N. Fedik, C. Martinez-Martinez, S. M. Ciborowski, X. Zhang, A. I. Boldyrev, K. H. Bowen, Angew. Chem. Int. Ed. 2019, 58, 13789-13793;
Angew. Chem. 2019, 131, 13927-13931.
R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, 1990.
D. Y. Zubarev, A. I. Boldyrev, Phys. Chem. Chem. Phys. 2008, 10, 5207-5217.
D. Y. Zubarev, A. I. Boldyrev, J. Org. Chem. 2008, 73, 9251-9258.
S. Pan, G. Frenking, Angew. Chem. Int. Ed. 2020, 59, 8756-8759;
Angew. Chem. 2020, 132, 8836-8839.
F. M. Bickelhaupt, E. J. Baerends in Reviews in Computational Chemistry (Eds.: K. B. Lipkowitz, D. B. Boyd), Wiley, New York, 2000, pp. 1-86.
G. Liu, N. Fedik, C. Martinez-Martinez, S. M. Ciborowski, X. Zhang, A. I. Boldyrev, K. H. Bowen, Angew. Chem. Int. Ed. 2020, 59, 8760-8764;
Angew. Chem. 2020, 132, 8840-8844.
D. Andrada, C. Foroutan-Nejad, DOI:10.6084/m9.figshare.11889747.v3.
C. Foroutan-Nejad, S. Shahbazian, R. Marek, Chem. Eur. J. 2014, 20, 10140-10152.
Z. Badri, K. Bouzková, C. Foroutan-Nejad, R. Marek, Cryst. Growth Des. 2014, 14, 2763-2772.
P. L. A. Popelier, The Chemical Bond: Fundamental Aspects of Chemical Bonding, Wiley-VCH, Weinheim, 2014, pp. 271-308.
C. Foroutan-Nejad, Z. Badri, R. Marek, Phys. Chem. Chem. Phys. 2015, 17, 30670-30679.
Z. Badri, C. Foroutan-Nejad, Phys. Chem. Chem. Phys. 2016, 18, 11693-11699.
E. Francisco, D. Menéndez Crespo, A. Costales, Á. Martín Pendás, J. Comput. Chem. 2017, 38, 816-829.
S. Shaik, D. Danovich, W. Wu, P. C. Hiberty, Nat. Chem. 2009, 1, 443-449.
A. Jaroš, Z. Badri, P. Lochan Bora, E. Farajpour Bonab, R. Marek, M. Straka, C. Foroutan-Nejad, Chem. Eur. J. 2018, 24, 4245-4249.
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
T. H. Dunning, J. Chem. Phys. 1989, 90, 1007-1023.
R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796-6806.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
E. Francisco, A. M. Pendás, A. Costales, Phys. Chem. Chem. Phys. 2014, 16, 4586-4597.
Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
A. M. Pendás, M. A. Blanco, E. Francisco, J. Chem. Phys. 2004, 120, 4581-4592.
A. M. Pendás, E. Francisco, M. A. Blanco, J. Comput. Chem. 2005, 26, 344-351.
M. A. Blanco, A. Martín Pendás, E. Francisco, J. Chem. Theory Comput. 2005, 1, 1096-1109.
A. M. Pendás, M. A. Blanco, E. Francisco, J. Comput. Chem. 2007, 28, 161-184.
Since publication of this manuscript as an Accepted Article, another paper was published in which the bonding in NaBH3− is explained as a spin-polarized bond: P. Salvador, E. Vos, I. Corral, D. M. Andrada, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202010948;
Angew. Chem. 2020, https://doi.org/10.1002/ange.202010948.