Transition-Metal-Mediated versus Tetrazine-Triggered Bioorthogonal Release Reactions: Direct Comparison and Combinations Thereof
Language English Country Germany Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- bioorthogonal chemistry, cleavage reactions, click chemistry, fluorogenic compounds, transition-metal complexes,
- MeSH
- Fluorescent Dyes chemistry MeSH
- Heterocyclic Compounds chemistry MeSH
- Inhibitory Concentration 50 MeSH
- Metals chemistry MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Transition Elements chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fluorescent Dyes MeSH
- Heterocyclic Compounds MeSH
- Metals MeSH
- Transition Elements MeSH
Bioorthogonal cleavage reactions are gaining popularity in chemically inducible prodrug activation and in the control of biomolecular functions. Despite similar applications, these reactions were developed and optimized on different substrates and under different experimental conditions. Reported herein is a side-by-side comparison of palladium-, ruthenium- and tetrazine-triggered release reactions, which aims at comparing the reaction kinetics, efficiency and overall advantages and limitations of the methods. In addition, we disclose the possibility of mutual combination of the cleavage reactions. Finally, we compare the efficiency of the bioorthogonal deprotections in cellular experiments, which revealed that among the three methods investigated, the palladium- and the tetrazine-promoted reaction can be used for efficient prodrug activation, but only the tetrazine-triggered reactions proceed efficiently inside cells.
See more in PubMed
J. Li, P. R. Chen, Nat. Chem. Biol. 2016, 12, 129-137;
X. Ji, Z. Pan, B. Yu, L. K. De La Cruz, Y. Zheng, B. Ke, B. Wang, Chem. Soc. Rev. 2019, 48, 1077-1094;
T. Volker, E. Meggers, Curr. Opin. Chem. Biol. 2015, 25, 48-54.
C. Streu, E. Meggers, Angew. Chem. Int. Ed. 2006, 45, 5645-5648;
Angew. Chem. 2006, 118, 5773-5776.
T. Volker, F. Dempwolff, P. L. Graumann, E. Meggers, Angew. Chem. Int. Ed. 2014, 53, 10536-10540;
Angew. Chem. 2014, 126, 10705-10710;
T. Volker, E. Meggers, ChemBioChem 2017, 18, 1083-1086.
M. Tomas-Gamasa, M. Martinez-Calvo, J. R. Couceiro, J. L. Mascarenas, Nat. Commun. 2016, 7, 12538.
E. i Negishi, Handbook of Organopalladium Chemistry for Organic Synthesis, John Wiley & Sons, 2002.
R. M. Yusop, A. Unciti-Broceta, E. M. Johansson, R. M. Sanchez-Martin, M. Bradley, Nat. Chem. 2011, 3, 239-243.
M. A. Miller, B. Askevold, H. Mikula, R. H. Kohler, D. Pirovich, R. Weissleder, Nat. Commun. 2017, 8, 15906;
J. T. Weiss, J. C. Dawson, K. G. Macleod, W. Rybski, C. Fraser, C. Torres-Sanchez, E. E. Patton, M. Bradley, N. O. Carragher, A. Unciti-Broceta, Nat. Commun. 2014, 5, 3277 ;
J. T. Weiss, J. C. Dawson, C. Fraser, W. Rybski, C. Torres-Sanchez, M. Bradley, E. E. Patton, N. O. Carragher, A. Unciti-Broceta, J. Med. Chem. 2014, 57, 5395-5404;
C. Adam, A. M. Perez-Lopez, L. Hamilton, B. Rubio-Ruiz, T. L. Bray, D. Sieger, P. M. Brennan, A. Unciti-Broceta, Chem. Eur. J. 2018, 24, 16783-16790;
T. L. Bray, M. Salji, A. Brombin, A. M. Perez-Lopez, B. Rubio-Ruiz, L. C. A. Galbraith, E. E. Patton, H. Y. Leung, A. Unciti-Broceta, Chem. Sci. 2018, 9, 7354-7361;
J. T. Weiss, C. Fraser, B. Rubio-Ruiz, S. H. Myers, R. Crispin, J. C. Dawson, V. G. Brunton, E. E. Patton, N. O. Carragher, A. Unciti-Broceta, Front. Chem. 2014, 2;
G. Y. Tonga, Y. D. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S. T. Kim, Y. C. Yeh, B. Yan, S. Hou, V. M. Rotello, Nat. Chem. 2015, 7, 597-603;
J. T. Weiss, N. O. Carragher, A. Unciti-Broceta, Sci. Rep. 2015, 5, 9329.
J. Li, J. T. Yu, J. Y. Zhao, J. Wang, S. Q. Zheng, S. X. Lin, L. Chen, M. Y. Yang, S. Jia, X. Y. Zhang, P. R. Chen, Nat. Chem. 2014, 6, 352-361;
J. Wang, S. Zheng, Y. J. Liu, Z. Y. Zhang, Z. Lin, J. F. Li, G. Zhang, X. Wang, J. Li, P. R. Chen, J. Am. Chem. Soc. 2016, 138, 15118-15121.
R. M. Versteegen, R. Rossin, W. ten Hoeve, H. M. Janssen, M. S. Robillard, Angew. Chem. Int. Ed. 2013, 52, 14112-14116;
Angew. Chem. 2013, 125, 14362-14366.
R. M. Versteegen, W. Ten Hoeve, R. Rossin, M. A. R. de Geus, H. M. Janssen, M. S. Robillard, Angew. Chem. Int. Ed. 2018, 57, 10494-10499;
Angew. Chem. 2018, 130, 10654-10659.
A. H. A. M. van Onzen, R. M. Versteegen, F. J. M. Hoeben, I. A. W. Filot, R. Rossin, T. Zhu, J. Wu, P. J. Hudson, H. M. Janssen, W. ten Hoeve, M. S. Robillard, J. Am. Chem. Soc. 2020, doi.org/10.1021/jacs.0c00531;
J. Tu, D. Svatunek, S. Parvez, H. J. Eckvahl, M. Xu, R. T. Peterson, K. N. Houk, R. M. Franzini, Chem. Sci. 2020, 11, 169-179.
R. Rossin, R. M. Versteegen, J. Wu, A. Khasanov, H. J. Wessels, E. J. Steenbergen, W. Ten Hoeve, H. M. Janssen, A. van Onzen, P. J. Hudson, M. S. Robillard, Nat. Commun. 2018, 9, 1484;
R. Rossin, S. M. J. van Duijnhoven, W. ten Hoeve, H. M. Janssen, L. H. J. Kleijn, F. J. M. Hoeben, R. M. Versteegen, M. S. Robillard, Bioconjugate Chem. 2016, 27, 1697-1706.
A. M. F. van der Gracht, M. A. R. de Geus, M. G. M. Camps, T. J. Ruckwardt, A. J. C. Sarris, J. Bremmers, E. Maurits, J. B. Pawlak, M. M. Posthoorn, K. M. Bonger, D. V. Filippov, H. S. Overkleeft, M. S. Robillard, F. Ossendorp, S. I. van Kasteren, ACS Chem. Biol. 2018, 13, 1569-1576.
H. X. Wu, S. C. Alexander, S. J. Jin, N. K. Devaraj, J. Am. Chem. Soc. 2016, 138, 11429-11432;
K. Neumann, S. Jain, A. Gambardella, S. E. Walker, E. Valero, A. Lilienkampf, M. Bradley, ChemBioChem 2017, 18, 91-95;
E. Jimenez-Moreno, Z. J. Guo, B. L. Oliveira, I. S. Albuquerque, A. Kitowski, A. Guerreiro, O. Boutureira, T. Rodrigues, G. Jimenez-Oses, G. J. L. Bernardes, Angew. Chem. Int. Ed. 2017, 56, 243-247;
Angew. Chem. 2017, 129, 249-253;
K. Neumann, A. Gambardella, A. Lilienkampf, M. Bradley, Chem. Sci. 2018, 9, 7198-7203.
M. H. Xu, J. L. Tu, R. M. Franzini, Chem. Commun. 2017, 53, 6271-6274.
J. L. Tu, M. H. Xu, S. Parvez, R. T. Peterson, R. M. Franzini, J. Am. Chem. Soc. 2018, 140, 8410-8414.
K. Neumann, A. Gambardella, M. Bradley, ChemBioChem 2019, 20, 872-876.
X. Y. Fan, Y. Ge, F. Lin, Y. Yang, G. Zhang, W. S. C. Ngai, Z. Lin, S. Q. Zheng, J. Wang, J. Y. Zhao, J. Li, P. R. Chen, Angew. Chem. Int. Ed. 2016, 55, 14046-14050;
Angew. Chem. 2016, 128, 14252-14256;
M. A. R. de Geus, E. Maurits, A. J. C. Sarris, T. Hansen, M. S. Kloet, K. Kamphorst, W. ten Hoeve, M. S. Robillard, A. Pannwitz, S. A. Bonnet, J. D. C. Codée, D. V. Filippov, H. S. Overkleeft, S. I. van Kasteren, Chem. Eur. J. 2020, doi:10.1002/chem.201905446.
R. D. Fields, M. V. Lancaster, Am. Biotechnol. Lab. 1993, 11, 48-50.
M. Zhou, Z. Diwu, N. Panchuk-Voloshina, R. P. Haugland, Anal. Biochem. 1997, 253, 162-168.
A. Alouane, R. Labruere, T. Le Saux, F. Schmidt, L. Jullien, Angew. Chem. Int. Ed. 2015, 54, 7492-7509;
Angew. Chem. 2015, 127, 7600-7619.
J. C. T. Carlson, H. Mikula, R. Weissleder, J. Am. Chem. Soc. 2018, 140, 3603-3612.
A. J. C. Sarris, T. Hansen, M. A. R. de Geus, E. Maurits, W. Doelman, H. S. Overkleeft, J. D. C. Codee, D. V. Filippov, S. I. van Kasteren, Chem. Eur. J. 2018, 24, 18075-18081.
M. Staderini, A. Gambardella, A. Lilienkampf, M. Bradley, Org. Lett. 2018, 20, 3170-3173.
E. Indrigo, J. Clavadetscher, S. V. Chankeshwara, A. Megia-Fernandez, A. Lilienkampf, M. Bradley, Chem. Commun. 2017, 53, 6712-6715.
Bioorthogonal Chemistry in Cellular Organelles
Structurally Redesigned Bioorthogonal Reagents for Mitochondria-Specific Prodrug Activation