Transition-Metal-Mediated versus Tetrazine-Triggered Bioorthogonal Release Reactions: Direct Comparison and Combinations Thereof

. 2020 Aug ; 85 (8) : 1669-1675.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32757364

Bioorthogonal cleavage reactions are gaining popularity in chemically inducible prodrug activation and in the control of biomolecular functions. Despite similar applications, these reactions were developed and optimized on different substrates and under different experimental conditions. Reported herein is a side-by-side comparison of palladium-, ruthenium- and tetrazine-triggered release reactions, which aims at comparing the reaction kinetics, efficiency and overall advantages and limitations of the methods. In addition, we disclose the possibility of mutual combination of the cleavage reactions. Finally, we compare the efficiency of the bioorthogonal deprotections in cellular experiments, which revealed that among the three methods investigated, the palladium- and the tetrazine-promoted reaction can be used for efficient prodrug activation, but only the tetrazine-triggered reactions proceed efficiently inside cells.

Zobrazit více v PubMed

J. Li, P. R. Chen, Nat. Chem. Biol. 2016, 12, 129-137;

X. Ji, Z. Pan, B. Yu, L. K. De La Cruz, Y. Zheng, B. Ke, B. Wang, Chem. Soc. Rev. 2019, 48, 1077-1094;

T. Volker, E. Meggers, Curr. Opin. Chem. Biol. 2015, 25, 48-54.

C. Streu, E. Meggers, Angew. Chem. Int. Ed. 2006, 45, 5645-5648;

Angew. Chem. 2006, 118, 5773-5776.

T. Volker, F. Dempwolff, P. L. Graumann, E. Meggers, Angew. Chem. Int. Ed. 2014, 53, 10536-10540;

Angew. Chem. 2014, 126, 10705-10710;

T. Volker, E. Meggers, ChemBioChem 2017, 18, 1083-1086.

M. Tomas-Gamasa, M. Martinez-Calvo, J. R. Couceiro, J. L. Mascarenas, Nat. Commun. 2016, 7, 12538.

E. i Negishi, Handbook of Organopalladium Chemistry for Organic Synthesis, John Wiley & Sons, 2002.

R. M. Yusop, A. Unciti-Broceta, E. M. Johansson, R. M. Sanchez-Martin, M. Bradley, Nat. Chem. 2011, 3, 239-243.

M. A. Miller, B. Askevold, H. Mikula, R. H. Kohler, D. Pirovich, R. Weissleder, Nat. Commun. 2017, 8, 15906;

J. T. Weiss, J. C. Dawson, K. G. Macleod, W. Rybski, C. Fraser, C. Torres-Sanchez, E. E. Patton, M. Bradley, N. O. Carragher, A. Unciti-Broceta, Nat. Commun. 2014, 5, 3277 ;

J. T. Weiss, J. C. Dawson, C. Fraser, W. Rybski, C. Torres-Sanchez, M. Bradley, E. E. Patton, N. O. Carragher, A. Unciti-Broceta, J. Med. Chem. 2014, 57, 5395-5404;

C. Adam, A. M. Perez-Lopez, L. Hamilton, B. Rubio-Ruiz, T. L. Bray, D. Sieger, P. M. Brennan, A. Unciti-Broceta, Chem. Eur. J. 2018, 24, 16783-16790;

T. L. Bray, M. Salji, A. Brombin, A. M. Perez-Lopez, B. Rubio-Ruiz, L. C. A. Galbraith, E. E. Patton, H. Y. Leung, A. Unciti-Broceta, Chem. Sci. 2018, 9, 7354-7361;

J. T. Weiss, C. Fraser, B. Rubio-Ruiz, S. H. Myers, R. Crispin, J. C. Dawson, V. G. Brunton, E. E. Patton, N. O. Carragher, A. Unciti-Broceta, Front. Chem. 2014, 2;

G. Y. Tonga, Y. D. Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S. T. Kim, Y. C. Yeh, B. Yan, S. Hou, V. M. Rotello, Nat. Chem. 2015, 7, 597-603;

J. T. Weiss, N. O. Carragher, A. Unciti-Broceta, Sci. Rep. 2015, 5, 9329.

J. Li, J. T. Yu, J. Y. Zhao, J. Wang, S. Q. Zheng, S. X. Lin, L. Chen, M. Y. Yang, S. Jia, X. Y. Zhang, P. R. Chen, Nat. Chem. 2014, 6, 352-361;

J. Wang, S. Zheng, Y. J. Liu, Z. Y. Zhang, Z. Lin, J. F. Li, G. Zhang, X. Wang, J. Li, P. R. Chen, J. Am. Chem. Soc. 2016, 138, 15118-15121.

R. M. Versteegen, R. Rossin, W. ten Hoeve, H. M. Janssen, M. S. Robillard, Angew. Chem. Int. Ed. 2013, 52, 14112-14116;

Angew. Chem. 2013, 125, 14362-14366.

R. M. Versteegen, W. Ten Hoeve, R. Rossin, M. A. R. de Geus, H. M. Janssen, M. S. Robillard, Angew. Chem. Int. Ed. 2018, 57, 10494-10499;

Angew. Chem. 2018, 130, 10654-10659.

A. H. A. M. van Onzen, R. M. Versteegen, F. J. M. Hoeben, I. A. W. Filot, R. Rossin, T. Zhu, J. Wu, P. J. Hudson, H. M. Janssen, W. ten Hoeve, M. S. Robillard, J. Am. Chem. Soc. 2020, doi.org/10.1021/jacs.0c00531;

J. Tu, D. Svatunek, S. Parvez, H. J. Eckvahl, M. Xu, R. T. Peterson, K. N. Houk, R. M. Franzini, Chem. Sci. 2020, 11, 169-179.

R. Rossin, R. M. Versteegen, J. Wu, A. Khasanov, H. J. Wessels, E. J. Steenbergen, W. Ten Hoeve, H. M. Janssen, A. van Onzen, P. J. Hudson, M. S. Robillard, Nat. Commun. 2018, 9, 1484;

R. Rossin, S. M. J. van Duijnhoven, W. ten Hoeve, H. M. Janssen, L. H. J. Kleijn, F. J. M. Hoeben, R. M. Versteegen, M. S. Robillard, Bioconjugate Chem. 2016, 27, 1697-1706.

A. M. F. van der Gracht, M. A. R. de Geus, M. G. M. Camps, T. J. Ruckwardt, A. J. C. Sarris, J. Bremmers, E. Maurits, J. B. Pawlak, M. M. Posthoorn, K. M. Bonger, D. V. Filippov, H. S. Overkleeft, M. S. Robillard, F. Ossendorp, S. I. van Kasteren, ACS Chem. Biol. 2018, 13, 1569-1576.

H. X. Wu, S. C. Alexander, S. J. Jin, N. K. Devaraj, J. Am. Chem. Soc. 2016, 138, 11429-11432;

K. Neumann, S. Jain, A. Gambardella, S. E. Walker, E. Valero, A. Lilienkampf, M. Bradley, ChemBioChem 2017, 18, 91-95;

E. Jimenez-Moreno, Z. J. Guo, B. L. Oliveira, I. S. Albuquerque, A. Kitowski, A. Guerreiro, O. Boutureira, T. Rodrigues, G. Jimenez-Oses, G. J. L. Bernardes, Angew. Chem. Int. Ed. 2017, 56, 243-247;

Angew. Chem. 2017, 129, 249-253;

K. Neumann, A. Gambardella, A. Lilienkampf, M. Bradley, Chem. Sci. 2018, 9, 7198-7203.

M. H. Xu, J. L. Tu, R. M. Franzini, Chem. Commun. 2017, 53, 6271-6274.

J. L. Tu, M. H. Xu, S. Parvez, R. T. Peterson, R. M. Franzini, J. Am. Chem. Soc. 2018, 140, 8410-8414.

K. Neumann, A. Gambardella, M. Bradley, ChemBioChem 2019, 20, 872-876.

X. Y. Fan, Y. Ge, F. Lin, Y. Yang, G. Zhang, W. S. C. Ngai, Z. Lin, S. Q. Zheng, J. Wang, J. Y. Zhao, J. Li, P. R. Chen, Angew. Chem. Int. Ed. 2016, 55, 14046-14050;

Angew. Chem. 2016, 128, 14252-14256;

M. A. R. de Geus, E. Maurits, A. J. C. Sarris, T. Hansen, M. S. Kloet, K. Kamphorst, W. ten Hoeve, M. S. Robillard, A. Pannwitz, S. A. Bonnet, J. D. C. Codée, D. V. Filippov, H. S. Overkleeft, S. I. van Kasteren, Chem. Eur. J. 2020, doi:10.1002/chem.201905446.

R. D. Fields, M. V. Lancaster, Am. Biotechnol. Lab. 1993, 11, 48-50.

M. Zhou, Z. Diwu, N. Panchuk-Voloshina, R. P. Haugland, Anal. Biochem. 1997, 253, 162-168.

A. Alouane, R. Labruere, T. Le Saux, F. Schmidt, L. Jullien, Angew. Chem. Int. Ed. 2015, 54, 7492-7509;

Angew. Chem. 2015, 127, 7600-7619.

J. C. T. Carlson, H. Mikula, R. Weissleder, J. Am. Chem. Soc. 2018, 140, 3603-3612.

A. J. C. Sarris, T. Hansen, M. A. R. de Geus, E. Maurits, W. Doelman, H. S. Overkleeft, J. D. C. Codee, D. V. Filippov, S. I. van Kasteren, Chem. Eur. J. 2018, 24, 18075-18081.

M. Staderini, A. Gambardella, A. Lilienkampf, M. Bradley, Org. Lett. 2018, 20, 3170-3173.

E. Indrigo, J. Clavadetscher, S. V. Chankeshwara, A. Megia-Fernandez, A. Lilienkampf, M. Bradley, Chem. Commun. 2017, 53, 6712-6715.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bioorthogonal Chemistry in Cellular Organelles

. 2023 Dec 16 ; 382 (1) : 2. [epub] 20231216

Structurally Redesigned Bioorthogonal Reagents for Mitochondria-Specific Prodrug Activation

. 2021 Jan 25 ; 1 (1) : 23-30. [epub] 20201215

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...