Influence of Surface and Bulk Defects on Contactless Resistivity Measurements of CdTe and Related Compounds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu dopisy
Grantová podpora
102-19-17783S
Grantová Agentura České Republiky
PubMed
32759802
PubMed Central
PMC7435808
DOI
10.3390/s20154347
PII: s20154347
Knihovny.cz E-zdroje
- Klíčová slova
- CdTe, contactless resistivity, nonexponential response, surface defects,
- Publikační typ
- dopisy MeSH
We analyzed the influence of parameters of deep levels in the bulk and conditions on the surface on transient charge responses of semi-insulating samples (CdTe and GaAs). We studied the dependence on the applied bias step used for the experimental evaluation of resistivity in contactless measurement setups. We used simulations based on simultaneous solutions of 1D drift diffusion and Poisson's equations as the main investigation tool. We found out that the resistivity can be reliably determined by the transient contactless method in materials with a large density of deep levels in the bulk (e.g., semi-insulating GaAs) when the response curve is described by a single exponential. In contrast, the materials with the low deep-level density, like semiconductor radiation detector materials (e.g., CdTe, CdZnTe, etc.), usually exhibit a complex response to applied bias, depending on the surface conditions. We show that a single exponential fit does not represent the true relaxation time and resistivity, in this case. A two-exponential fit can be used for a rough estimate of bulk material resistivity only in a limit of low-applied bias, when the response curve approaches a single-exponential shape. A decreasing of the bias leads to a substantially improved agreement between the evaluated and true relaxation time, which is also consistent with the approaching of the relaxation curve to the single-exponential shape.
Zobrazit více v PubMed
Stibal R. Contactless evaluation of semi-insulating GaAs wafer resistivity using the time-dependent charge measurement. Semicond. Sci. Technol. 1991;6:995–1001. doi: 10.1088/0268-1242/6/10/008. DOI
Seidl A., Mosel F., Friedrich J., Kretzer U., Müller G. Optical cross-sections and distribution of Fe2+ and Fe3+ in semi-insulating liquid encapsulated Czochralski grown InP: Fe. Mater. Sci. Eng. B. 1993;21:321–324. doi: 10.1016/0921-5107(93)90377-Y. DOI
Fornari R., Görög T., Jimenez J., de La Puente E., Avella M., Grant I., Brozel M., Nicholls M. Uniformity of semi-insulating InP wafers obtained by Fe diffusion. J. Appl. Phys. 2000;88:5225–5229. doi: 10.1063/1.1315327. DOI
Rasp M., Straubinger T.L., Schmitt E., Bickermann M., Reshanov S., Sadowski H. Silicon Carbide and Related Materials (Materials Science Forum 433-4) Trans Tech Publications Ltd.; Zurich, Switzerland: 2002. pp. 55–58.
Eiche C., Joerger W., Fiederle M., Ebling D., Salk M., Schwarz R., Benz K.W. Characterization of CdTe: Cl crystals grown under microgravity conditions by time dependent charge measurements (TDCM) J. Cryst. Growth. 1996;166:245–250. doi: 10.1016/0022-0248(96)00071-1. DOI
Zázvorka J., Franc J., Moravec P., Jesenská E., Šedivý L., Ulrych J., Mašek K. Contactless resistivity and photoconductivity correlation to surface preparation of CdZnTe. Appl. Surf. Sci. 2014;315:144–148. doi: 10.1016/j.apsusc.2014.07.104. DOI
Kumar S.G., Rao K.S.R.K. Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: Fundamental and critical aspects. Energy Environ. Sci. 2014;7:45–102. doi: 10.1039/C3EE41981A. DOI
Rong Z., Guo X., Lian S., Liu S., Qin D., Mo Y., Xu W., Wu H., Zhao H., Hou L. Interface engineering for both cathode and anode enables low–cost highly efficient solution–processed CdTe nanocrystal solar cells. Adv. Funct. Mater. 2019;42:1904018. doi: 10.1002/adfm.201904018. DOI
Guo X., Tan Q., Liu S., Qin D., Mo Y., Hou L., Liu A., Wu H., Ma Y. High-efficiency solution-processed CdTe nanocrystal solar cells incorporating a novel crosslinkable conjugated polymer as the hole transport layer. Nano Energy. 2018;46:150–157. doi: 10.1016/j.nanoen.2018.01.048. DOI
Kuciauskas D., Kanevce A., Dippo P., Seyedmohammadi S., Malik R. Minority-carrier lifetime and surface recombination velocity in single-crystal CdTe. IEEE J. Photovolt. 2015;5:366–371. doi: 10.1109/JPHOTOV.2014.2359738. DOI
Toušek J., Kindl D., Toušková J., Dolhov S., Poruba A. Diffusion length in CdTe by measurement of photovoltage spectra in CdS/CdTe solar cells. J. Appl. Phys. 2001;89:460–465. doi: 10.1063/1.1332418. DOI
Seeger K. Semiconductor Physics. 8th ed. Springer; Berlin/Heidelberg, Germany: 2002. p. 152.
Schroder D.K. Carrier lifetimes in silicon. IEEE Trans. Electron Devices. 1997;44:160–170. doi: 10.1109/16.554806. DOI
Shockley W., Read T.W. Statistics of the recombinations of holes and electrons. Phys. Rev. 1952;87:835–842. doi: 10.1103/PhysRev.87.835. DOI
Grill R., Belas E., Franc J., Bugár M., Uxa Š., Moravec P., Höschl P. Polarization study of defect structure of CdTe radiation detectors. IEEE Trans. Nucl. Sci. 2011;58:3172–3181. doi: 10.1109/TNS.2011.2165730. DOI
Turkevych I., Grill R., Franc J., Belas E., Höschl P., Moravec P. High-temperature electron and hole mobility in CdTe. Semicond. Sci. Technol. 2002;17:1064–1066. doi: 10.1088/0268-1242/17/10/305. DOI
Yu A.Y.C. Electron tunneling and contact resistance of metal-silicon contact barriers. Solid State Electron. 1970;13:239–247. doi: 10.1016/0038-1101(70)90056-0. DOI
Sze S.M. Physics of Semiconductor Devices. 2nd ed. Wiley & Sons; Hoboken, NJ, USA: 1981. Chapter 5.
Franc J., James R.B., Grill R., Dědič V., Belas E., Praus P., Prekas G., Sellin P.J. Influence of contacts on electric field in an Au/(CdZn)Te/Au detector: A simulation. IEEE Trans. Nucl. Sci. 2010;57:2349–2358. doi: 10.1109/TNS.2010.2053049. DOI
Castaldini A., Cavallini A., Fraboni B., Fernandez P., Piqueras J. Deep energy levels in CdTe and CdZnTe. J. Appl. Phys. 1998;83:2121–2126. doi: 10.1063/1.366946. DOI