Fagopyrum esculentum ssp. ancestrale-A Hybrid Species Between Diploid F. cymosum and F. esculentum
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
32765557
PubMed Central
PMC7378737
DOI
10.3389/fpls.2020.01073
Knihovny.cz E-resources
- Keywords
- Fagopyrum esculentum ssp. ancestrale, buckwheat, chloroplast genome, molecular markers, phylogenetics,
- Publication type
- Journal Article MeSH
Fagopyrum cymosum is considered as most probable wild ancestor of cultivated buckwheat. However, the evolutionary route from F. cymosum to F. esculentum remains to be deciphered. We hypothesized that a hybrid species exists in natural habitats between diploid F. cymosum and F. esculentum. The aim of this research was to determine the phylogenetic position of F. esculentum ssp. ancestrale and to provide new thoughts on buckwheat evolution. Different methodologies including evaluation of morphological traits, determination of secondary metabolites, fluorescence in situ hybridization (FISH), comparative chloroplast genomics, and molecular markers were deployed to determine the phylogenetic relationship of F. esculentum ssp. ancestrale with F. cymosum and F. esculentum. The ambiguity observed in morphological pattern of genetic variation in three species revealed that F. esculentum ssp. ancestrale is closely related to F. cymosum and F. esculentum. Flavonoid analysis revealed that F. esculentum ssp. ancestrale is closely related to F. esculentum. Comparative chloroplast genome analysis further supported the close proximity of F. esculentum ssp. ancestrale with F. esculentum. Additionally, molecular marker analysis revealed that F. esculentum ssp. ancestrale exhibits co-dominance with the bands amplified by F. cymosum and F. esculentum. These finding provided supporting evidence in favor of the hypothesis that F. esculentum ssp. ancestrale is a hybrid species between F. cymosum to F. esculentum, which was probably originated by spontaneous hybridization under natural conditions.
Crop Science Department Agricultural Institute of Slovenia Ljubljana Slovenia
Department of Tourism Sichuan Tourism University Chengdu China
Gene Bank Crop Research Institute Prague Czechia
Indian Council of Agricultural Research Vivekananda Institute of Hill Agriculture Almora India
Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
School of Life Sciences Hunan University of Science and Technology Xiangtan China
See more in PubMed
Aguinagalde I., Gomez-Campo C. (1984). The phylogenetic significance of flavonoids in Crambe L. (Cruciferae). Bot. J. Linn. Soc. 89, 277–288. 10.1111/j.1095-8339.1984.tb02200.x DOI
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC
Bate-Smith E., Richens R. (1973). Flavonoid chemistry and taxonomy in Ulmus. Biochem. Syst. Ecol. 1, 141–146. 10.1016/0305-1978(73)90004-5 DOI
Beier S., Thiel T., Münch T., Scholz U., Mascher M. (2017). MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585. 10.1093/bioinformatics/btx198 PubMed DOI PMC
Cho K. S., Yun B. K., Yoon Y. H., Hong S. Y., Mekapogu M., Kim K. H., et al. (2015). Complete chloroplast genome sequence of tartary buckwheat (Fagopyrum tataricum) and comparative analysis with common buckwheat (F. esculentum). PloS One 10, e0125332. 10.1371/journal.pone.0125332 PubMed DOI PMC
Drummond C. S. (2008). Diversifcation of Lupinus (Leguminosae) in the western New World: derived evolution of perennial life history and colonization of montane habitats. Mol. Phylogenet. Evol. 48, 408–421. 10.1016/j.ympev.2008.03.009 PubMed DOI
Frazer K. A., Pachter L., Poliakov A., Rubin E. M., Dubchak I. (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279. 10.1093/nar/gkh458 PubMed DOI PMC
Goldstein D., Schlötterer C. (1999). Microsatellites: evolution and applications (New York: Oxford University Press; ).
Harris E. S. (2009). Phylogenetic and environmental lability of flavonoids in a medicinal moss. Biochem. Syst. Ecol. 37, 180–192. 10.1016/j.bse.2009.02.004 DOI
Hsiao C., Wang R. R-C., Dewey D. R. (1986). Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Can. J. Genet. Cytol. 28, 109–120. 10.1139/g86-015 DOI
Jansen R. K., Ruhlman T. A. (2012). Plastid genomes of seed plants. Genomics of chloroplasts and mitochondria (Dordrecht: Springer; ) 35, 103–126. 10.1007/978-94-007-2920-9_5 DOI
Jenkins G., Hasterok R. (2007). BAC’landing’on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat. Protoc. 2, 88–98. 10.1038/nprot.2006.490 PubMed DOI
Joshi D. C., Zhang K., Wang C., Chandora R., Khurshid M., Li J., et al. (2020). Strategic enhancement of genetic gain for nutraceutical development in buckwheat, A genomics-driven perspective. Biotechnol. Adv. 39, 107479. 10.1016/j.biotechadv.2019.107479 PubMed DOI
Kadyrova G., Ryzhova N., Kochieva E. (2010). Phylogenetic relationships among Fagopyrum species based on analysis of the nad1 Gene b/c intron. Moscow. Univ. Biol. Sci. Bull. 65, 161–163. 10.3103/S0096392510040103 DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. 10.1093/bioinformatics/bts199 PubMed DOI PMC
Khakhlova O., Bock R. (2006). Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J. 46, 85–94. 10.1111/j.1365-313X.2006.02673.x PubMed DOI
Levan A., Fredga K., Sandberg A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220. 10.1111/j.1601-5223.1964.tb01953.x DOI
Levin R. A., Myers N. R., Bohs L. (2006). Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae). Am. J. Bot. 93, 157–169. 10.3732/ajb.93.1.157 DOI
Li W. X., Zhu Z. H., Li G. Y., Liu F., Li Y., Liu S. C. (2008). Study on Flavone in Buckwheat Determined by Spectrophotometric Method. J. Plant Genet. Resour. 9 (4), 502–505. 10.13430/j.cnki.jpgr.2008.04.010 DOI
Li J., Wang S., Jing Y., Wang L., Zhou S. (2013). A modified CTAB protocol for plant DNA extraction. Chin. Bull. Bot. 48, 72–78. 10.3724/SP.J.1259.2013.00072 DOI
Logacheva M. D., Samigullin T. H., Dhingra A., Penin A. A. (2008). Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale–a wild ancestor of cultivated buckwheat. BMC. Plant. Biol. 8, 59. 10.1186/1471-2229-8-59 PubMed DOI PMC
Lohse M., Drechsel O., Kahlau S., Bock R. (2013). OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41, W575–W581. 10.1093/nar/gkt289 PubMed DOI PMC
Mes T. H. M., Wijers G. J., Hart H. T. (1997). Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation. J. Evol. Biol. 10, 193–216. 10.1007/s000360050018 DOI
Neethirajan S., Hirose T., Wakayama J., Tsukamoto K., Kanahara H., Sugiyama S. (2011). Karyotype Analysis of Buckwheat Using Atomic Force Microscopy. Microsc. Microanal. 17, 572–577. 10.1017/S1431927611000481 PubMed DOI
Ohnishi O., Matsuoka Y. (1996). Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes Genet. Syst. 71, 383–390. 10.1266/ggs.71.383 DOI
Ohnishi O. (1991). Discovery of the wild ancestor of common buckwheat. Fagopyrum 11, 5–10.
Ohnishi O. (1998). Search for the wild ancestor of buckwheat I. Description of new Fagopyrum (Polygonaceae) species and their distribution in China and the Himalayan hills. Fagopyrum 15, 18–28. 10.1007/BF02861199 DOI
Ohnishi O. (2009). On the origin of cultivated common buckwheat based on allozyme analyses of cultivated and wild populations of common buckwheat. Fagopyrum 26, 3–9.
Ohnishi O. (2016). “Chapter 1: Molecular Taxonomy of the Genus Fagopyrum,” in Molecular Breeding and Nutritional Aspects of Buckwheat (London: Elsevier; ).
Ohsako and Ohnishi (2000). Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of non-coding regions in chloroplast DNA. Am. J. Bot. 87, 573–582. 10.2307/2656601 PubMed DOI
Sanchez A., Schuster T. M., Kron K. A. (2009). A Large-Scale Phylogeny of Polygonaceae Based on Molecular Data. Int. J. Plant Sci. 170, 1044–1055. 10.1086/605121 DOI
Scheen A. C., Albert V. A. (2009). Molecular phylogenetics of the Leucas group (Lamioideae; Lamiaceae). Syst. Bot. 34, 173–181. 10.1600/036364409787602366 DOI
Shi J., Li Y., Zhang Z., Wu B., Wang A. (2015). Genetic diversity of buckwheat and its wild species. J. Plant Genet. Resour. 16, 443–450. 10.13430/j.cnki.jpgr.2015.03.002 DOI
Song Y., Dong W., Liu B., Xu C., Yao X., Gao J., et al. (2015). Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front. Plant Sci. 6, 662. 10.3389/fpls.2015.00662 PubMed DOI PMC
Stamatakis A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Stebbins G. L. (1971). Chromosomal evolution in higher plants. London: Edward Amold, 43–46.
Steward A. N. (1930). The polygoneae of eastern Asia. Contr.Gray Herb. 88, 1–129.
Stuessy T. F., Crawford D. J. (1983). Flavonoids and phylogenetic reconstruction. Plant Syst. Evol. 143, 83–107. 10.1007/BF00984113 DOI
Taylor W. R. (1925). Chromosome constrictions as distinguishing characteristics in plants. Am. J. Bot. 12, 238–244. 10.2307/2435420 DOI
Walling J. G., Zhang W., Jiang J. (2013). Fluorescence in situ hybridization techniques for cytogenetic and genomic analyses. Rice Protocols (Totowa: Springer; ) 956, 13–27. 10.1007/978-1-62703-194-3_2 PubMed DOI
Wang C. L., Li Z. Q., Ding M. Q., Tang Y., Zhu X. M., Liu J. L. (2017. a). Fagopyrum longzhoushanense, a new species of Polygonaceae from Sichuan, China. Phytotaxa 291, 73–80 10.11646/phytotaxa.291.1.7 DOI
Wang C. L., Ding M. Q., Zou C. Y., Zhu X. M., Tang Y., Zhou M. L., et al. (2017. b). Comparative analysis of four buckwheat species based on morphology and complete chloroplast genome sequences. Sci. Rep. 7, 6514. 10.1038/s41598-017-06638-6 PubMed DOI PMC
Wyman S. K., Jansen R. K., Boore J. L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252–3255. 10.1093/bioinformatics/bth352 PubMed DOI
Zhang K. X., Logacheva M. D., Meng Y., Hu J., Wan D., Li L., et al. (2018). Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum . J. Exp. Bot. 69, 1955–1966. 10.1093/jxb/ery032 PubMed DOI PMC
Zhou M. L., Bai D. Q., Tang Y., Zhu X. M., Shao J. R. (2012). Genetic diversity of four new species related to southwestern Sichuan buckwheats as revealed by karyotype, ISSR and allozyme characterization. Plant Syst. Evol. 298, 751–759. 10.1007/s00606-011-0586-0 DOI
Zhou M. L., Wang C. L., Wang D. Z., Zheng Y. D., Li F. L., Zhu X. M., et al. (2014). Phylogenetic relationship of four new species related to southwestern Sichuan Fagopyrum based on morphological and molecular characterization. Biochem. Syst. Ecol. 57, 403–409. 10.1016/j.bse.2014.09.024 DOI
Zhuang Y., Tripp E. A. (2017). The draft genome of Ruellia speciosa (Beautiful Wild Petunia: Acanthaceae). DNA Res. 24, 179–192. 10.1093/dnares/dsw054 PubMed DOI PMC