Capillary electrophoretic profiling of in-bone tryptic digests of proteins as a potential tool for the detection of inflammatory states in oral surgery
Language English Country Germany Media print-electronic
Document type Journal Article
- Keywords
- alveolar bones, capillary electrophoresis, in-bone protein digestion, linear discriminant analysis, principal component analysis,
- MeSH
- Electrophoresis, Capillary MeSH
- Bone and Bones chemistry metabolism MeSH
- Humans MeSH
- Swine MeSH
- Oral Surgical Procedures * MeSH
- Trypsin chemistry metabolism MeSH
- Inflammation diagnosis metabolism surgery MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Trypsin MeSH
The commonly used histological assessment of pathological states of alveolar bone tissues in oral surgery needs laborious and time-consuming processing by an experienced histologist. Therefore, a simpler and faster methodology is required in this field. Following this demand, this paper reports a straightforward approach using the tryptic cleavage of proteins directly in bone without its demineralization, followed by the capillary electrophoresis-ultraviolet detection profiling of the yielded protein digest. Cleavage-derived peptides were separated by capillary electrophoresis in acidic background electrolytes, pH 2.01-2.54. The best resolution of peptide fragments with the highest peak capacity was achieved in the background electrolyte composed of 55 mM H3 PO4 , 14 mM tris(hydroxymethyl)aminomethan, pH 2.01. The differences in the obtained capillary electrophoresis-ultraviolet detection profiles with characteristic patterns for particular bone samples were subsequently discriminated by linear discriminant analysis over principal components. This approach was first verified on porcine bone tissues as model samples; jawbone and calf bone tissues could be discriminated with an accuracy of 100%. Subsequently, the method was capable of differentiating unequivocally between human healthy and inflammatory alveolar bone tissues obtained from oral surgery. This procedure seems to be promising as complement or even an alternative to the traditional histological discrimination between healthy and inflammatory bone tissues in oral surgery.
See more in PubMed
Salmon C. R., Tomazela D. M., Ruiz K. G. S., Foster B. L., Leme A. F. P., Sallum E. A., Somerman M. J., Nociti F. H., Proteomic analysis of human dental cementum and alveolar bone. J Proteomics. 2013;91:544-555.
Termine J. D., Belcourt A. B., Christner P. J., Conn K. M., Nylen M. U., Properties of dissociatively extracted fetal tooth matrix proteins .1. Principal molecular-species in developing bovine enamel. J Biol Chem. 1980;255:9760-9768.
Hubbard M. J., Kon J. C., Proteomic analysis of dental tissues. J Chromatogr B 2002;771:211-220.
Salmon C. R., Giorgetti A. P. O., Leme A. F. P., Domingues R. R., Kolli T. N., Foster B. L., Nociti F. H., Microproteome of dentoalveolar tissues. Bone 2017;101:219-229.
Savi F. M., Brierly G. I., Baldwin J., Theodoropoulos C., Woodruff M. A., Comparison of different decalcification methods using rat mandibles as a Model. J Histochem Cytochem. 2017;65:705-722.
Shevchenko A., Wilm M., Vorm O., Mann M., Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem. 1996;68:850-858.
Hynek R., Kučková S., Hradilová J., Kodíček M., Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings. Rapid Commun Mass Spectrom. 2004;18:1896-1900.
Kučková S., Crhová M., Vaňková L., Hnízda A., Hynek R., Kodíček M., Towards proteomic analysis of milk proteins in historical building materials. Int J Mass Spectrom. 2009;284:42-46.
Michalusová I., Trubačová D., Cejnar P., Kučková S., Santrůček J., Hynek R., Direct tryptic cleavage in bone tissue followed by LC-MS/MS as a first step towardsroutine characterization of proteins embedded in alveolar bones. Int J Mass Spectrom. 2020;455: https://doi.org/10.1016/j.ijms.2020.116375.
Hynek R., Kašička V., Kučerová Z., Káš J., Fast detection of phosphorylation of human pepsinogen A, human pepsinogen C and swine pepsinogen using a combination of reversed- phase high-performance liquid chromatography and capillary zone electrophoresis for peptide mapping. J Chromatogr B 1997;688:213-220.
Krásný L., Pompach P., Strnadová M., Hynek R., Valis K., Havlíček V., Novák P., Volný M., High-throughput workflow for identification of phosphorylated peptides by LC-MALDI-TOF/TOF-MS coupled to in situ enrichment on MALDI plates functionalized by ion landing. J Mass Spectrom. 2015;50:802-811.
Štěpánová S., Kašička V., Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta. 2016;933:23-42.
Dawod M., Arvin N. E., Kennedy R. T., Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017;142:1847-1866.
Kašička V., Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2018;39:209-234.
Kašička V., Recent developments in capillary and microchip electroseparations of peptides (2017-mid 2019). Electrophoresis 2020;41:10-35.
Štěpánová S., Kašička V., Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci. 2019;42:398-414.
Shen X. J., Yang Z. C., Mccool E. N., Lubeckyj R. A., Chen D. Y., Sun L. L., Capillary zone electrophoresis-mass spectrometry for top-down proteomics. Trends Anal Chem. 2019;120, Art. No. 115644.
Zhang Z. B., Zhu G. J., Peuchen E. H., Dovichi N. J., Preparation of linear polyacrylamide coating and strong cationic exchange hybrid monolith in a single capillary, and its application as an automated platform for bottom-up proteomics by capillary electrophoresis-mass spectrometry. Microchim Acta 2017;184:921-925.
Latosinska A., Siwy J., Mischak H., Frantzi M., Peptidomics and proteomics based on CE-MS as a robust tool in clinical application: The past, the present, and the future. Electrophoresis 2019;40:2294-2308.
Zhang W., Segers K., Mangelings D., Van Eeckhaut A., Hankemeier T., Vander Heyden Y., Ramautar R., Assessing the suitability of capillary electrophoresis-mass spectrometry for biomarker discovery in plasma-based metabolomics. Electrophoresis 2019;40:2309-2320.
McDonald W. H., Yates J. R., Shotgun proteomics: Integrating technologies to answer biological questions. Curr Opin Mol Ther. 2003;5:302-309.
Herrero M., Ibanez E., Cifuentes A., Capillary electrophoresis-electrospray-mass spectrometry in peptide analysis and peptidomics. Electrophoresis 2008;29:2148-2160.
Simo C., Dominguez-Vega E., Marina M. L., Garcia M. C., Dinelli G., Cifuentes A., CE-TOF MS analysis of complex protein hydrolyzates from genetically modified soybeans - A tool for foodomics. Electrophoresis 2010;31:1175-1183.
Štěpánová S., Kašička V., Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci. 2016;39:198-211.
Hynek R., Kašička V., Kučerová Z., Káš J., Application of reversed-phase high-performance liquid chromatography and capillary zone electrophoresis to the peptide mapping of pepsin isoenzymes. J Chromatogr B 1996;681:37-45.
Simo C., Gonzalez R., Barbas C., Cifuentes A., Combining peptide modeling and capillary electrophoresis mass spectrometry for characterization of enzymes cleavage patterns: Recombinant versus natural bovine pepsin A. Anal Chem. 2005;77:7709-7716.
Ross G. A., Lorkin P., Perrett D., Separation and tryptic digest mapping of normal and variant haemoglobins by capillary electrophoresis. J Chromatogr. 1993;636:69-79.
Sázelová P., Kašička V., Leon C., Ibanez E., Cifuentes A., Capillary electrophoretic profiling of tryptic digests of water soluble proteins from Bacillus thuringiensis-transgenic and non-transgenic maize species. Food Chem. 2012;134:1607-1615.
Sedláková P., Eckhardt A., Lacinová K., Pataridis S., Mikšík I., Král V., Kašička V., Separation of tryptic peptides of native and glycated BSA using open-tubular CEC with salophene-lanthanide-Zn2+ complex as stationary phase. J Sep Sci. 2009;32:3930-3935.
Mikšík I., Lacinová K., Zmatlíková Z., Sedláková P., Král V., Sýkora D., Řezanka P., Kašička V., Open-tubular capillary electrochromatography with bare gold nanoparticles-based stationary phase applied to separation of trypsin digested native and glycated proteins. J Sep Sci. 2012;35:994-1002.
Ladner Y., Mas S., Coussot G., Montels J., Perrin C., In-line tryptic digestion of therapeutic molecules by capillary electrophoresis with temperature control. Talanta 2019;193: 146-151.
Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M., Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 2014;13:2513-2526.
Cejnar P., Kučková S., Procházka A., Karamonová L., Svobodová B., Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains. Rapid Commun Mass Spectrom. 2018;32:871-881.
Barker M., Rayens W., Partial least squares for discrimination. J Chemometr. 2003;17:166-173.
Lee L. C., Liong C. Y., Jemain A. A., Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst 2018;143:3526-3539.
R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2019.
Kučková S. H., Rambousková G., Hynek R., Cejnar P., Oltrogge D., Fuchs R., Evaluation of mass spectrometric data using principal component analysis for determination of the effects of organic lakes on protein binder identification. J Mass Spectrom. 2015;50:1270-1278.