Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32789181
PubMed Central
PMC7399694
DOI
10.1126/sciadv.abb6003
PII: abb6003
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The anomalous Hall effect (AHE) is one of the most fundamental phenomena in physics. In the highly conductive regime, ferromagnetic metals have been the focus of past research. Here, we report a giant extrinsic AHE in KV3Sb5, an exfoliable, highly conductive semimetal with Dirac quasiparticles and a vanadium Kagome net. Even without report of long range magnetic order, the anomalous Hall conductivity reaches 15,507 Ω-1 cm-1 with an anomalous Hall ratio of ≈ 1.8%; an order of magnitude larger than Fe. Defying theoretical expectations, KV3Sb5 shows enhanced skew scattering that scales quadratically, not linearly, with the longitudinal conductivity, possibly arising from the combination of highly conductive Dirac quasiparticles with a frustrated magnetic sublattice. This allows the possibility of reaching an anomalous Hall angle of 90° in metals. This observation raises fundamental questions about AHEs and opens new frontiers for AHE and spin Hall effect exploration, particularly in metallic frustrated magnets.
Charles University Prague Czech Republic
Colorado School of Mines Goldon Colorado 80401 USA
Department of Physics University of South Florida Tampa Florida 33620 USA
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 162 00 Praha 6 Czech Republic
Johannes Gutenberg University of Mainz Mainz Germany
Johns Hopkins University Baltimore Maryland 21218 USA
Max Planck Institute for Chemical Physics of Solids Dresden Germany
Max Planck Institute of Microstructure Physics Halle Germany
Oxford Department of Physics Oxford England
Universidad del Norte Barranquilla Colombia
University of California at Santa Barbara Santa Barbara California 93106 USA
Zobrazit více v PubMed
Nagaosa N., Sinova J., Onoda S., MacDonald A. H., Ong N. P., Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).
Karplus R., Luttinger J. M., Hall effect in ferromagnetics. Phys. Rev. 95, 1154 (1954).
Smit J., The spontaneous Hall effect in ferromagnetics I. Physica 21, 877–887 (1955).
Smit J., The spontaneous Hall effect in ferromagnetics II. Physica 24, 39–51 (1958).
Pugh E. M., Rostoker N., Hall effect in ferromagnetic materials. Rev. Mod. Phys. 25, 151 (1953).
Liang T., Lin J., Gibson Q., Kushwaha S., Liu M., Wang W., Xiong H., Sobota J. A., Hashimoto M., Kirchmann P. S., Shen Z.-X., Cava R. J., Ong N. P., Anomalous Hall effect in ZrTe5. Nat. Phys. 14, 451–455 (2018).
Manyala N., Sidis Y., DiTusa J. F., Aeppli G., Young D. P., Fisk Z., Large anomalous Hall effect in a silicon-based magnetic semiconductor. Nat. Mater. 3, 255–262 (2004). PubMed
Yu R., Zhang W., Zhang H.-J., Zhang S.-C., Dai X., Fang Z., Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010). PubMed
Chang C.-Z., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., Wang L.-L., Ji Z.-Q., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., Zhang S.-C., He K., Wang Y., Lu L., Ma X.-C., Xue Q.-K., Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013). PubMed
Liu C.-X., Zhang S.-C., Qi X.-L., The quantum anomalous Hall effect: Theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).
Chang C.-Z., Zhao W., Kim D. Y., Zhang H., Assaf B. A., Heiman D., Zhang S.-C., Liu C., Chan M. H. W., Moodera J. S., High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015). PubMed
Bestwick A., Fox E. J., Kou X., Pan L., Wang K. L., Goldhaber-Gordon D., Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015). PubMed
Sundaram G., Niu Q., Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915 (1999).
Onoda M., Nagaosa N., Topological nature of anomalous Hall effect in ferromagnets. J. Phys. Soc. Jpn. 71, 19–22 (2002).
Jungwirth T., Niu Q., MacDonald A. H., Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002). PubMed
Wang Q., Xu Y., Lou R., Liu Z., Li M., Huang Y., Shen D., Weng H., Wang S., Lei H., Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018). PubMed PMC
K. Manna, C. Felser, J. Gooth, S. N. Guin, T.-H. Kao, J. Kübler, L. Müchler, J. Noky, C. Shekhar, R. Stinshoff, Y. Sun, Topological magnetic Heuslers: Role of symmetry and the Berry phase.
Guin S. N., Manna K., Noky J., Watzman S. J., Fu C., Kumar N., Schnelle W., Shekhar C., Sun Y., Gooth J., Felser C., Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater. 11, 16 (2019).
Berger L., Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B 2, 4559 (1970).
Berger L., Influence of spin orbit interaction on the transport processes in ferromagnetic nickel alloys, in the presence of a degeneracy of the 3d band. Physica 30, 1141–1159 (1964).
Dheer P. N., Galvanomagnetic effects in iron whiskers. Phys. Rev. 156, 637 (1967).
Tian Y., Ye L., Jin X., Proper scaling of the anomalous Hall effect. Phys. Rev. Lett. 103, 087206 (2009). PubMed
Miyasato T., Abe N., Fujii T., Asamitsu A., Onoda S., Onose Y., Nagaosa N., Tokura Y., Crossover behavior of the anomalous Hall effect and anomalous nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007). PubMed
Maryenko D., Mishchenko A. S., Bahramy M. S., Ernst A., Falson J., Kozuka Y., Tsukazaki A., Nagaosa N., Kawasaki M., Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system. Nat. Commun. 8, 14777 (2017). PubMed PMC
H. Ishizuka, N. Nagaosa, Theory of giant skew scattering by spin cluster. arXiv preprint arXiv:1906.06501 (2019).
Tatara G., Kawamura H., Chirality-driven anomalous Hall effect in weak coupling regime. J. Physical Soc. Japan 71, 2613–2616 (2002).
Kawamura H., Anomalous Hall effect as a probe of the chiral order in spin glasses. Phys. Rev. Lett. 90, 047202 (2003). PubMed
Ishizuka H., Nagaosa N., Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets. Sci. Adv. 4, eaap9962 (2018). PubMed PMC
Yao X.-P., Chen G., Pr2Ir2O7: When Luttinger semimetal meets Melko-Hertog-Gingras spin ice state. Phys. Rev. X 8, 041039 (2018).
Okabe H., Hiraishi M., Koda A., Kojima K. M., Takeshita S., Yamauchi I., Matsushita Y., Kuramoto Y., Kadono R., Metallic spin-liquid-like behavior of LiV2O4. Phys. Rev. B 99, 041113(R) (2019).
Nakatsuji S., Machida Y., Maeno Y., Tayama T., Sakakibara T., van Duijn J., Balicas L., Millican J. N., Macaluso R. T., Chan J. Y., Metallic spin-liquid behavior of the geometrically frustrated kondo lattice Pr2Ir2O7. Phys. Rev. Lett. 96, 087204 (2006). PubMed
Shimizu Y., Takeda H., Tanaka M., Itoh M., Niitaka S., Takagi H., An orbital-selective spin liquid in a frustrated heavy fermion spinel LiV2O4. Nat. Commun. 3, 981 (2012). PubMed
Ortiz B. R., Gomes L. C., Morey J. R., Winiarski M., Bordelon M., Mangum J. S., Oswald I. W. H., Rodriguez-Rivera J. A., Neilson J. R., Wilson S. D., Ertekin E., McQueen T. M., Toberer E. S., New kagome prototype materials: Discovery of KV3Sb5, RbV3Sb5, and CsV3SB5. Phys. Rev. Mater. 3, 094407 (2019).
Hou D., Su G., Tian Y., Jin X., Yang S. A., Niu Q., Multivariable scaling for the anomalous Hall effect. Phys. Rev. Lett. 114, 217203 (2015). PubMed
Behnia K., Balicas L., Kopelevich Y., Signatures of electron fractionalization in ultra-quantum bismuth. Science 317, 1729–1731 (2007). PubMed
Ye L., Tian Y., Jin X., Xiao D., Temperature dependence of the intrinsic anomalous Hall effect in nickel. Phys. Rev. B 85, 220403(R) (2012).
Sangiao S., Morellon L., Simon G., De Teresa J. M., Pardo J. A., Arbiol J., Ibarra M. R., Anomalous Hall effect in Fe (001) epitaxial thin films over a wide range in conductivity. Phys. Rev. B 79, 014431 (2009).
Schad R., Beliën P., Verbanck G., Moshchalkov V., Bruynseraede Y., Analysis of the transport properties of epitaxial Fe and Cr films. J. Phys. Condens. Matter 10, 6643–6650 (1998).
Iguchi S., Hanasaki N., Tokura Y., Scaling of anomalous Hall resistivity in Nd2 (Mo1-xNbx)2O7 with spin chirality. Phys. Rev. Lett. 99, 077202 (2007). PubMed
Nakatsuji S., Kiyohara N., Higo T., Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). PubMed
Liu E., Sun Y., Kumar N., Muechler L., Sun A., Jiao L., Yang S.-Y., Liu D., Liang A., Xu Q., Kroder J., Süß V., Borrmann H., Shekhar C., Wang Z., Xi C., Wang W., Schnelle W., Wirth S., Chen Y., Goennenwein S. T. B., Felser C., Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018). PubMed PMC
Nayak A. K., Fischer J. E., Sun Y., Yan B., Karel J., Komarek A. C., Shekhar C., Kumar N., Schnelle W., Kübler J., Felser C., Parkin S. S. P., Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016). PubMed PMC
Ye L., Kang M., Liu J., von Cube F., Wicker C. R., Suzuki T., Jozwiak C., Bostwick A., Rotenberg E., Bell D. C., Fu L., Comin R., Checkelsky J. G., Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018). PubMed
Yang H., Sun Y., Zhang Y., Shi W.-J., Parkin S. S. P., Yan B., Topological weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).
Taguchi Y., Oohara Y., Yoshizawa H., Nagaosa N., Tokura Y., Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001). PubMed
Liang T., Gibson Q., Ali M. N., Liu M., Cava R. J., Ong N. P., Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015). PubMed
Zhang C., Ni Z., Zhang J., Yuan X., Liu Y., Zou Y., Liao Z., Du Y., Narayan A., Zhang H., Gu T., Zhu X., Pi L., Sanvito S., Han X., Zou J., Shi Y., Wan X., Savrasov S. Y., Xiu F., Ultrahigh conductivity in Weyl semimetal NbAs nanobelts. Nat. Mater. 18, 482–488 (2019). PubMed
Wang L., Meric I., Huang P. Y., Gao Q., Gao Y., Tran H., Taniguchi T., Watanabe K., Campos L. M., Muller D. A., Guo J., Kim P., Hone J., Shepard K. L., Dean C. R., One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). PubMed
Jiang J., Tang F., Pan X. C., Liu H. M., Niu X. H., Wang Y. X., Xu D. F., Yang H. F., Xie B. P., Song F. Q., Dudin P., Kim T. K., Hoesch M., Kumar Das P., Vobornik I., Wan X. G., Feng D. L., Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2. Phys. Rev. Lett. 115, 166601 (2015). PubMed
Blaha P., Schwarz K., Sorantin P., Trickey S., Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990).
Blaha P., Computer code wien2k (vienna university of technology, 2002), improved and updated unix version of the original p. blaha, k. schwarz, p. sorantin, sb rickey. Comput. Phys. Commun. 59, 399 (1990).
Kresse G., Furthmuller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). PubMed
Blochl P. E., Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). PubMed
Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P., Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda + u study. Phys. Rev. B 57, 1505–1509 (1998).
Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed
Yang B.-J., Nagaosa N., Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014). PubMed
Mostofi A. A., Yates J. R., Lee Y.-S., Souza I., Vanderbilt D., Marzari N., wannier90: A tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).
Zelezny J., Zhang Y., Felser C., Yan B., Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017). PubMed
L. Smejkal, R. Gonzalez-Hernandez, T. Jungwirth, J. Sinova, Crystal Hall effect in collinear antiferromagnets. arXiv:1901.00445 (2019). PubMed PMC