Metabolic Activity of Human Embryos after Thawing Differs in Atmosphere with Different Oxygen Concentrations

. 2020 Aug 12 ; 9 (8) : . [epub] 20200812

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32806506

The vitrification of human embryos is more and more frequently being utilized as a method of assisted reproduction. For this technique, gentle treatment of the embryos after thawing is crucial. In this study, the balance of amino acids released to/consumed from the cultivation media surrounding the warmed embryos was observed in the context of a cultivation environment, which was with the atmospheric oxygen concentration ≈20% or with a regulated oxygen level-hysiological (5%). It is the first time that total amino acid turnover in human embryos after their freezing at post compaction stages has been evaluated. During this study, progressive embryos (developed to blastocyst stage) and stagnant embryos (without developmental progression) were analyzed. It was observed that the embryos cultivated in conditions of physiological oxygen levels (5% oxygen) showed a significantly lower consumption of amino acids from the cultivation media. Progressively developing embryos also had significantly lower total amino acid turnovers (consumption and production of amino acids) when cultured in conditions with physiological oxygen levels. Based on these results it seems that a cultivation environment with a reduced oxygen concentration decreases the risk of degenerative changes in the embryos after thawing. Therefore, the cultivation of thawed embryos in an environment with physiological oxygen levels may preclude embryonal stagnation, and can support the further development of human embryos after their thawing.

Zobrazit více v PubMed

Liebermann J., Nawroth F., Isachenko V., Isachenko E., Rahimi G., Tucker M. Potential importance of vitrification in reproductive medicine. Biol. Reprod. 2002;67:1671–1680. doi: 10.1095/biolreprod.102.006833. PubMed DOI

Pal L., Kovacs P., Witt B., Jindal S., Santoro N., Barad D. Postthaw blastomere survival is predictive of the success of frozen-thawed embryo transfer cycles. Fertil. Steril. 2004;82:821–826. doi: 10.1016/j.fertnstert.2004.02.136. PubMed DOI

Lane M., Maybach J., Gardner D. Addition of ascorbate during cryopreservation stimulates subsequent embryo development. Hum. Reprod. 2002;17:2686–2693. doi: 10.1093/humrep/17.10.2686. PubMed DOI

Kitagawa Y., Suzuki K., Yoneda A., Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62:1186–1197. doi: 10.1016/j.theriogenology.2004.01.011. PubMed DOI

Hosseini S., Forouzanfar M., Hajian M., Asgari V., Abedi P., Hosseini L., Ostadhosseini S., Moulavi F., Langrroodi M., Sadeghi H., et al. Antioxidant supplementation of culture medium during embryo development and/or after vitrification-warming; which is the most important? J. Assist. Reprod. Genet. 2009;26:355–364. doi: 10.1007/s10815-009-9317-7. PubMed DOI PMC

VanBlerkom J., Antczak M., Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: Association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum. Reprod. 1997;12:1047–1055. doi: 10.1093/humrep/12.5.1047. PubMed DOI

Fischer B., Bavister B. Oxygen-tension in the oviduct and uterus of rhesus-monkeys, hamsters and rabbits. J. Reprod. Fertil. 1993;99:673–679. doi: 10.1530/jrf.0.0990673. PubMed DOI

Dumoulin J., Meijers C., Bras M., Coonen E., Geraedts J., Evers J. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum. Reprod. 1999;14:465–469. doi: 10.1093/humrep/14.2.465. PubMed DOI

Waldenstrom U., Engstrom A., Hellberg D., Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil. Steril. 2009;91:2461–2465. doi: 10.1016/j.fertnstert.2008.03.051. PubMed DOI

Bontekoe S., Mantikou E., van Wely M., Seshadri S., Repping S., Mastenbroek S. Cochrane Database of Systematic Reviews. John Wiley & Sons; Hoboken, NJ, USA: 2012. Low oxygen concentrations for embryo culture in assisted reproductive technologies. PubMed DOI PMC

Meintjes M., Chantilis S., Douglas J., Rodriguez A., Guerami A., Bookout D., Barnett B., Madden J. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program dagger. Hum. Reprod. 2009;24:300–307. doi: 10.1093/humrep/den368. PubMed DOI

Guo N., Li Y., Ai J., Gu L., Chen W., Liu Q. Two different concentrations of oxygen for culturing precompaction stage embryos on human embryo development competence: A prospective randomized sibling-oocyte study. Int. J. Clin. Exp. Pathol. 2014;7:6191–6198. PubMed PMC

Madr A., Glatz Z., Crha I. ‘Omics’ Techniques: Genomics, Transcriptomics, Proteomics and Metabolomics in Embryo Developmental Capacity Assessment. Chem. Listy. 2017;111:551–558.

Baumann C., Morris D., Sreenan J., Leese H. The quiet embryo hypothesis: Molecular characteristics favoring viability. Mol. Reprod. Dev. 2007;74:1345–1353. doi: 10.1002/mrd.20604. PubMed DOI

Houghton F., Hawkhead J., Humpherson P., Hogg J., Balen A., Rutherford A., Leese H. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 2002;17:999–1005. doi: 10.1093/humrep/17.4.999. PubMed DOI

Leese H., Guerif F., Allgar V., Brison D., Lundin K., Sturmey R. Biological Optimization, the Goldilocks Principle, and How Much Is Lagom in the Preimplantation Embryo. Mol. Reprod. Dev. 2016;83:748–754. doi: 10.1002/mrd.22684. PubMed DOI

Stokes P., Hawkhead J., Fawthrop R., Picton H., Sharma V., Leese H., Houghton F. Metabolism of human embryos following cryopreservation: Implications for the safety and selection of embryos for transfer in clinical IVF. Hum. Reprod. 2007;22:829–835. doi: 10.1093/humrep/dem079. PubMed DOI

Brison D., Houghton F., Falconer D., Roberts S., Hawkhead J., Humpherson P., Lieberman B., Leese H. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 2004;19:2319–2324. doi: 10.1093/humrep/deh409. PubMed DOI

Picton H., Elder K., Houghton F., Hawkhead J., Rutherford A., Hogg J., Leese H., Harris S. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol. Hum. Reprod. 2010;16:557–569. doi: 10.1093/molehr/gaq040. PubMed DOI PMC

Cela A., Madr A., Jeseta M., Zakova J., Crha I., Glatz Z. Study of metabolic activity of human embryos focused on amino acids by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Electrophoresis. 2018;39:3040–3048. doi: 10.1002/elps.201800265. PubMed DOI

Gardner K., Schoolcraft W. A randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum. Reprod. 1999;14:1663. doi: 10.1093/humrep/14.6.1663A. PubMed DOI

Leese H. Quiet please, do not disturb: A hypothesis of embryo metabolism and viability. Bioessays. 2002;24:845–849. doi: 10.1002/bies.10137. PubMed DOI

Swain J., Carrell D., Cobo A., Meseguer M., Rubio C., Smith G. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil. Steril. 2016;105:571–587. doi: 10.1016/j.fertnstert.2016.01.035. PubMed DOI

Wale P., Gardner D. Oxygen Regulates Amino Acid Turnover and Carbohydrate Uptake During the Preimplantation Period of Mouse Embryo Development. Biol. Reprod. 2012;87 doi: 10.1095/biolreprod.112.100552. PubMed DOI

Kirkegaard K., Hindkjaer J., Ingerslev H. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil. Steril. 2013;99:738. doi: 10.1016/j.fertnstert.2012.11.028. PubMed DOI

Yu Y., Xu Y., Ding C., Khoudja R.Y., Lin M., Awoniyi A.O., Dai J., Puscheck E.E., Rappolee D.A., Zhou C.E. Comparison of 2, 5, and 20% O2 on the development of post-thaw human embryos. J. Assist. Reprod. Genet. 2016;33:919–927. PubMed PMC

Lane M., Gardner D. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 2003;69:1109–1117. doi: 10.1095/biolreprod.103.018093. PubMed DOI

Karagenc L., Sertkaya Z., Ciray N., Ulug U., Bahceci M. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod. Biomed. Online. 2004;9:409–417. doi: 10.1016/S1472-6483(10)61276-X. PubMed DOI

Houghton F., Leese H. Metabolism and developmental competence of the preimplantation embryo. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004;115:S92–S96. doi: 10.1016/j.ejogrb.2004.01.019. PubMed DOI

Hemmings K., Maruthini D., Vyjayanthi S., Hogg J., Balen A., Campbell B., Leese H., Picton H. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment. Hum. Reprod. 2013;28:1031–1044. doi: 10.1093/humrep/des458. PubMed DOI PMC

Gardner D., Lane M. Amino-acids and ammonium regulate mouse embryo development in culture. Biol. Reprod. 1993;48:377–385. doi: 10.1095/biolreprod48.2.377. PubMed DOI

Wale P., Gardner D. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod. Biomed. Online. 2010;21:402–410. doi: 10.1016/j.rbmo.2010.04.028. PubMed DOI

Edwards L., Williams D., Gardner D. Intracellular pH of the mouse preimplantation embryo: Amino acids act as buffers of intracellular pH. Hum. Reprod. 1998;13:3441–3448. doi: 10.1093/humrep/13.12.3441. PubMed DOI

Mandal N., Mangroo D., Dalluge J., McCloskey J., Rajbhandary U. Role of the three consecutive G:C base pairs conserved in the anticodon stem of initiator tRNAs in initiation of protein synthesis in Escherichia coli. RNA Publ. RNA Soc. 1996;2:473–482. PubMed PMC

Bin P., Huang R., Zhou X. Oxidation resistance of the sulfur amino acides: Methionine and Cysteine. Biomed Res. Int. 2017 doi: 10.1155/2017/9584932. PubMed DOI PMC

Kimball S., Shantz L., Horetsky R., Jefferson L. Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. J. Biol. Chem. 1999;274:11647–11652. doi: 10.1074/jbc.274.17.11647. PubMed DOI

Anthony J., Yoshizawa F., Anthony T., Vary T., Jefferson L., Kimball S. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J. Nutr. 2000;130:2413–2419. doi: 10.1093/jn/130.10.2413. PubMed DOI

Lynch C., Fox H., Vary T., Jefferson L., Kimball S. Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes. J. Cell. Biochem. 2000;77:234–251. doi: 10.1002/(SICI)1097-4644(20000501)77:2<234::AID-JCB7>3.0.CO;2-I. PubMed DOI

Meucci E., Mele M. Amino acids and plasma antioxidant capacity. Amino Acids. 1997;12:373–377. doi: 10.1007/BF01373017. DOI

Devreker F., Winston R., Hardy K. Glutamine improves human preimplantation development in vitro. Fertil. Steril. 1998;69:293–299. doi: 10.1016/S0015-0282(97)00463-9. PubMed DOI

Orsi N., Leese H. Ammonium exposure and pyruvate affect the amino acid metabolism of bovine blastocysts in vitro. Reproduction. 2004;127:131–140. doi: 10.1530/rep.1.00031. PubMed DOI

Hansen J., Harris C. Glutathione during embryonic development. Biochim. Biophys. Acta Gen. Subj. 2015;1850:1527–1542. doi: 10.1016/j.bbagen.2014.12.001. PubMed DOI

Guerin P., El Mouatassim S., Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update. 2001;7:175–189. doi: 10.1093/humupd/7.2.175. PubMed DOI

Wale P., Gardner D. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum. Reprod. Update. 2016;22:2–22. doi: 10.1093/humupd/dmv034. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...